Skip to main content
Log in

Investigation of Vorticity Effects on Local Scouring

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a numerical model developed to simulate flow and bed deformation around hydraulic structures. The model uses an improved formula for the bed shear stress by applying vorticity effect and solves the full three-dimensional Reynolds-averaged Navier–Stokes equations to calculate the flow field. The capability for numerical models to predict local scour is severely restricted by the sediment transport formula. Up to now, the scour computations were developed based on general sedimentation formula through a straight unobstructed flow path. The new sedimentation formula introduced in this paper can take into account vortices that affect the local scour process. To verify the model, a bridge pier and a groyne, which are considered as typical river-engineering structures, were simulated in different hydraulic conditions by applying both the ordinary bed shear stress equation and the new one. Comparisons show that the new equation could predict the scour more accurately than the ordinary one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u :

Velocity

i, j :

Direction descriptors

t :

Time

ρ :

Density of the fluid

f :

Body force

p :

Pressure

υ :

Kinematic viscosity of the fluid

τ ij :

Reynolds stress component

u′:

Fluctuating velocity

υ t :

Eddy viscosity

S ij :

Strain-rate tensor

δ ij :

Kronecker delta

k :

Turbulence kinetic energy

\({\varepsilon}\) :

Turbulence dissipation

G:

Rate of turbulence production

\({\sigma_k ,\sigma _\varepsilon ,C_{1\varepsilon} ,C_{2\varepsilon} ,C_\mu}\) :

Coefficients

c :

Suspended-sediment concentration

w s :

Fall velocity of the sediment particle

x :

General space dimension

z :

x 3(vertical direction component)

Γ:

Diffusion coefficient

Sc :

Turbulent Schmidt number

u * :

Shear velocity

d :

Sediment particle diameter

a :

Reference level

τ :

Bed shear stress

τ c :

Critical bed-shear stress

ρ s :

Density of sediment

g :

Acceleration of gravity.

c bed :

Suspended-sediment concentration on the reference level

q b :

Bed load transport

τ e :

Effective tractive stress

φ :

Angle between bed and horizontal direction

\({\phi}\) :

Repose angle

n :

Total sediment continuity defect in a bed cell

ω :

Vorticity

Ω:

Angular velocity

r :

Radius of rotation

a c :

Centripetal acceleration

F c :

Centripetal force

m :

Mass of rotating particle

r 0 :

Radius of sediment particle

ρ s :

Density of sediment particle

References

  1. Ali K.H.M., Karim O.: Simulation of flow around piers. J. Hydraul. Res. 40(2), 161–174 (2002)

    Article  Google Scholar 

  2. Salaheldin T.M., Imran J., Chaudhry M.H.: Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 130(2), 91–100 (2004)

    Article  Google Scholar 

  3. Ettema R.: Scour at bridge piers. Rept. No. 216. University of Auckland, Auckland, New Zealand (1980)

    Google Scholar 

  4. Chiew Y.M., Melville B.W.: Local scour around bridge piers. J. Hydraul. Res. 25, 15–26 (1980)

    Article  Google Scholar 

  5. Lin, G.H.: Study on the local scour around cylindrical bridge piers (in Chinese). M.S. Thesis, Feng-Chia University, Taichung, Taiwan, ROC (1993)

  6. MichiueM. Hinokidani O.: Calculation of 2-dimensional bed evolution around spur-dike. Annu. J. Hydraul. Eng. JSCE 36, 61–66 (1992)

    Google Scholar 

  7. Ushijima S., Shimizu T., Sasaki A., Takizawa Y.: Prediction method for local scour by warmed cooling-water jets. J. Hydraul. Eng. 118(8), 1164–1183 (1992)

    Article  Google Scholar 

  8. Olsen N.R.B., Melaaen M.C.: Three-dimensional calculation of scour around cylinders. J. Hydraul. Eng. 119(7), 1048–1054 (1993)

    Article  Google Scholar 

  9. Ushijima S.: Arbitrary Lagrangian-Eulerian numerical prediction for local scour caused by turbulent flows. J. Comput. Phys. 125, 71–82 (1996)

    Article  MATH  Google Scholar 

  10. Peng, J.; Tamai, N.; Kawahara, Y.; Huang, G.W.: Numerical modeling of local scour around spur dykes. In: Proceedings of 28th IAHR Congress (CDs) (1998)

  11. Olsen N.R.B., Kjellesvig H.M.: Three-dimensional numerical flow modeling for estimation of maximum local scour depth. J. Hydraul. Res. 36(4), 579–590 (1998)

    Article  Google Scholar 

  12. Yen C.J., Lai J.S., Chang W.Y.: Modeling of 3D flow and scouring around circular piers. National Science Council. ROC(A) 25(1), 17–26 (2001)

    Google Scholar 

  13. Bhuiyan, A.B.M.F.; Huque F.; Saifuddin, A.K.M.: Numerical modeling of floe pattern & bed evolution around spur-type structures. In: Proceedings of 9th International Symposium on Riv. Sed. Yichang, pp. 1497–1502 (2004)

  14. Nagata N., Hosoda T., Nakato T., Muramoto Y.: Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 131(12), 1074–1087 (2005)

    Article  Google Scholar 

  15. Zhang, H.; Nakagawa, H.; Muto, Y.; Baba, Y.; Ishigaki, T.: Numerical simulation of flow and local scour around hydraulic structures. River Flow 2006, pp. 1683–1693. ISBN: 0-415-40815-6

  16. Huang W., Yang Q., Xiao H.: CFD modeling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 38, 1050–1058 (2009)

    Article  MATH  Google Scholar 

  17. Ghiassi R.: Mathematics and computer application in nature simulation. Lecture Notes. University of Tehran, Iran (2004)

    Google Scholar 

  18. Abbasnia, A.H.; Ghiassi, R.; Mahjoob, A.: Investigation of the vorticity flow effect on erosion and scouring behind the bridge piers. In: 3rd International Conference on Bridg., Amirkabir University of Technology, Iran (2008)

  19. Yasi M.: Uncertainties in the simulation of bed evolution in recirculating flow area behind groynes. Iran J. Sci. Technol. B 30(B1), 69–836 (2006)

    Google Scholar 

  20. Patankar S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  21. Lyn, D.A.: Turbulence models for sediment transport engineering. In: Garcia, M.H. (ed.) ASCE Manual of Practice 110, chap. 16. Sedimentation Engineering: Processes, Measurements, Modelling and Practice, Reston (2006)

  22. Van Rijn L.C.: Sediment transport. II: Suspended load transport. J. Hydraul. Eng. 110(11), 1613–1641 (1984)

    Article  Google Scholar 

  23. Shields, A.: Use of dimensional analysis and turbulence research for sediment transport. Publication No. 26, Preussen Research Laboratory for Water and Marine Constructions, Berlin (1936)

  24. Van Rijn L.C.: Sediment transport I: bed load transport. J. Hydraul. Eng. 110(10), 1431–1456 (1984)

    Article  Google Scholar 

  25. Rouse H.: Modern conceptions of the mechanics of fluid turbulence. Trans. Am. Soc. Civil Eng. 102, 113–133 (1937)

    Google Scholar 

  26. Wu W., Wang S.S.Y.: Depth-averaged 2-D calculation of flow and sediment transport in curved channels. Int. J. Sediment Res. 19(4), 241–257 (2004)

    Google Scholar 

  27. Abbasnia, A.H.: Computer modeling of bridge pier scour, using accurate discretization schemes. MSc thesis, Tehran University (2005)

  28. Ghiassi, R.; Abbasnia, A.H.; Kilaneii, F.; Yosefi, S.: Flood behavior modeling and investigation of the Jakigoor bridge demolition mechanism. In: 2nd International Conference on Integrated Natural Disaster Management, University of Tehran, Iran (2007)

  29. Green S.I.: Fluid Vortices. Kluwer, The Netherlands (1995)

    Book  MATH  Google Scholar 

  30. Lugt H.J.: Vortex Flow in Nature and Technology. Wiley, Bethesda (1983)

    Google Scholar 

  31. Yasi, M.: Flow and bed geometry behind a groyne. PhD Thesis, Department of Civil Engineering, Monash University, Melbourne (1997)

  32. Hefny M.M., Ooka R.: CFD analysis of pollutant dispersion around buildings: effect of cell geometry. Build. Env. 44, 1699–1706 (2009)

    Article  Google Scholar 

  33. Celik I.: Procedure for estimation and reporting of discretization error in CFD applications. Editorial policy statement on the control of numerical accuracy. J. Fluids Eng. (2005)

  34. Roache P.J.: A method for uniform reporting of grid refinement studies. J. Fluids Eng. 116, 405–413 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiassi, R., Abbasnia, A.H. Investigation of Vorticity Effects on Local Scouring. Arab J Sci Eng 38, 537–548 (2013). https://doi.org/10.1007/s13369-012-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0337-8

Keywords

Navigation