Skip to main content
Log in

Mesoscale Numerical Prediction of Fluid Flow in a Shear Driven Cavity

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a detailed analysis of the lattice Boltzmann method is presented to simulate an incompressible fluid flow problem. Thorough derivation of macroscopic hydrodynamics equations from the continuous Boltzmann equation is performed. After showing how the formulation of the mesocale particle dynamics fits into the framework of lattice Boltzmann simulations, numerical results of lid-driven flow inside square and triangular cavities are presented to highlight the applicability of the approach. The objective of the paper is to gain better understanding of this relatively new approach for applied engineering problems in fluid transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santos, H.; Costa, M.: Modelling transport phenomena and chemical reactions in automotive three-way catalytic converters. Chem. Eng. J. 148, 173–183

  2. Bianco V., Manca O., Nardini S., Roma M.: Numerical investigation of transient thermal and fluidynamic fields in an executive aircraft cabin. Appl. Thermal Eng. 29, 3418–3425 (2009)

    Article  Google Scholar 

  3. Xia J., Luo K.H.: Direct numerical solution of diluted combustion by evaporating droplets. Proc. Combust. Inst. 32, 2267–2274 (2009)

    Article  Google Scholar 

  4. Makoto T., Toshio K., Takuji N., Takahide N., Takaki N., Huilai Z., Keiji O., Nobuyuku O.: Computational visualization of unsteady flow around vehicles using high performance computing. Comput. Fluids 38, 981–990 (2009)

    Article  MATH  Google Scholar 

  5. Bird G.A.: Approach to translational equilibrium in a rigid sphere gas. Phys. Fluid 9, 1518–1519 (1963)

    Article  Google Scholar 

  6. Alder B.J., Wainwright T.E.: Phase transition for a hard sphere systems. J. Chem. Phys. 27, 1207–1208 (1957)

    Article  Google Scholar 

  7. McNamara G., Zanetti G.: Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  8. Frish U., Hasslacher B., Pomeau Y.: Lattice gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505–1509 (1986)

    Article  Google Scholar 

  9. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision process in gasses 1, small amplitude process in charged and neutral one component system. Phys. Rev. 70, 511–525 (1954)

    Article  Google Scholar 

  10. Harris S.: An Introduction to the Theory of Boltzmann Equation. New York: Holt, Rinehart and Winston (1971)

    Google Scholar 

  11. Azwadi C.S., Tanahashi T.: Simplified thermal lattice Boltzmann in incompressible limit. Int. J. Modern Phys. B 20, 2437–2449 (2006)

    Article  MATH  Google Scholar 

  12. Abe T.: Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J. Comput. Phys. 131, 241–246 (1998)

    Google Scholar 

  13. Benzi R., Succi S.: Two-dimensional turbulence with the lattice Boltzmann equation. J. Phys. A 23, L1–L5 (1990)

    Article  Google Scholar 

  14. Bernsdorf J., Brenner G., Durst F.: Numerical analysis of the pressure drop in porous media flow with the lattice Boltzmann (BGK) automata. Comput. Phys. Commun. 129, 247–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gladrow D.W.: Lattice gas cellular automata and lattice Boltzmann models. Springer, New York (2000)

    Book  MATH  Google Scholar 

  16. He X., Luo L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghia U., Ghia K.N., Shin C.Y.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    MATH  Google Scholar 

  18. Vanka S.P.: Block implicit multigrid solution of Navier–Stokes equation in primitive variables. J. Comput. Phys. 65, 138–158 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Erturk E., Gokcol O.: Fine grid numerical solutions of triangular cavity flow. Eur. Phys. J. Appl. Phys. 38: 97–105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azwadi Che Sidik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidik, N.A.C., Munir, F.A. Mesoscale Numerical Prediction of Fluid Flow in a Shear Driven Cavity. Arab J Sci Eng 37, 1723–1735 (2012). https://doi.org/10.1007/s13369-012-0286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0286-2

Keywords

Navigation