Skip to main content
Log in

Using the Experimental Design Method to Optimize the Conicity and Circularity of Bored Holes

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The bored hole quality is directly affected by the cutting vibrations in a boring operation. The aim of this study is to determine an optimum condition for the conicity of the bored hole (COBH) and deviation from circularity of the bored hole (DFC) by using the experimental design method. In this study, the effects of cutting parameters and boring tool material in relation to the overhang ratio of boring tool on both of the COBH and DFC quality criteria were examined experimentally. The optimal combination of test factors was determined by using the analysis of the signal to noise (S/N) ratio. Both the lower depth of cut values and the higher effective tool length lead to deterioration in the hole quality for both criteria. Besides, an increase in the depth of cut values as well as decreasing in the feed rate lead to quality improvement with regard to the COBH and DFC quality criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yussefian N.Z., Moetakef-Imani B., El-Mounayri H.: The prediction of cutting force for boring process. Int. J. Mach. Tools Manuf. 48, 1387 (2008)

    Article  Google Scholar 

  2. Taskesen A., Mendi F., Kisioglu Y., Kulekci M.K.: Deformation analysis of boring bars using analytical and finite element approaches. Strojniski vestnik J. Mech. Eng. 52(3), 161 (2006)

    Google Scholar 

  3. Moradi , H.; Bakhtiari-Nejad, F. , Movahhedy M.R.: Tunable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J. Sound Vib. 318, 93 (2008)

    Article  Google Scholar 

  4. Merrit H.E.: Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research-1. Trans. ASME J. Eng. Ind. B 87(4), 447 (1965)

    Article  Google Scholar 

  5. Nagano S.T., Koizumi T., Fujii T., Tsujiuchi N., Ueda H., Steel K.: Development of a composite boring bar. Compos. Struct. 38, 531 (1997)

    Article  Google Scholar 

  6. Tewani S.G., Rouch K.E., Walcott B.L.: A study of cutting process stability of a boring bar with active dynamic absorber. Int. J. Mach. Tools Manuf. 35, 91 (1995)

    Article  Google Scholar 

  7. Pratt, J.R.; Nahfey, A.H.: Active vibration control for chatter suppression. American Institute of Aeronautics and Astronautics, Inc., Reston, vol. 97–1210, p. 623 (1997)

  8. Pratt J.R., Nahfey A.H.: Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions. Phil. Trans. Roy. Soc. Lond. Part A 359, 759 (2001)

    Article  MATH  Google Scholar 

  9. Tarng Y.S., Kao J.Y., Lee E.C.: Chatter suppressions in turning operations with a tuned vibration absorber. J. Mater. Process. Technol. 105, 55 (2000)

    Article  Google Scholar 

  10. Sims N.D.: Vibration absorbers for chatter suppression: A new analytical tuning methodology. J. Sound Vib. 301, 592 (2000)

    Article  Google Scholar 

  11. Lee E.C., Nian C.Y., Tarng Y.S.: Design of a dynamic vibration absorber against vibrations in turning operations. J. Mater. Process. Tech. 108, 278 (2001)

    Article  Google Scholar 

  12. Arnold R.N.: The mechanism of tool vibration in cutting of steel. Proc. Inst. Mech. Eng. 154, 261 (1946)

    Article  Google Scholar 

  13. Subramani, G.; Suvada, R.; Kapoor, S.G.; DeVor, R.G.; Meingast, W.: A model for the prediction of force system for cylinder boring process. In: Proceedings of the XV NAMRC (1987)

  14. Kuster F.: Cutting dynamics and stability of boring bars. Ann. CIRP 39(1), 361 (1990)

    Article  Google Scholar 

  15. Jayaram S., Iyer M.: An analytical model for prediction of chatter stability in boring. Trans. NAMRI/SME 28, 203 (2000)

    Google Scholar 

  16. Budak E., Ozlu E.: Analytical modeling of chatter stability in turning and boring operations: Part II experimental verification. J. Manuf. Sci. Eng. 129, 733 (2007)

    Article  Google Scholar 

  17. Atabey F., Lazoglu I., Altintas Y.: Mechanics of boring processes Part-I. Int. J. Mach. Tools Manuf. 43, 463 (2003)

    Article  Google Scholar 

  18. Grum J., Kisin M.: Influence of the microstructure on surface integrity in turning-Part-II: the influence of a microstructure of the workpiece material on cutting forces. Int. J. Mach. Tools Manuf. 43(15), 1545 (2003)

    Article  Google Scholar 

  19. Grum J., Kisin M.: The influence of microstructure of three Al–Si alloys on cutting force amplitude during fine turning. Int. J. Mach. Manuf. 46(7/8), 769 (2006)

    Article  Google Scholar 

  20. Mendi, F.: Takim Tezgahlari Teori ve Hesaplari (in Turkish). 72 TDFO Ltd.Sti. (1996)

  21. Roy R.K.: A Primer on the Taguchi Method. Van Nostrand Reinhold, New York (1990)

    MATH  Google Scholar 

  22. Taguchi G.: Introduction to Quality Engineering. Asian Productivity Organization, Tokyo (1990)

    Google Scholar 

  23. Nalbant M., Gökkaya H., Sur G.: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Des. 28, 1379 (2007)

    Article  Google Scholar 

  24. Abuelnaga A.M., El-Dardiry M.A.: Optimization methods for metal cutting. Int. J. Mach. Tool Des. Res. 24(1), 11 (1984)

    Article  Google Scholar 

  25. Chryssolouris G., Guillot M.: A comparison of statistical and AI approaches to the selection of process parameters in intelligent machining. J. Eng. Ind. Trans. ASME 112, 122 (1990)

    Article  Google Scholar 

  26. Chua M.S., Rahman M., Wong Y.S., Loh H.T.: Determination of optimal cutting conditions using design of experiments and optimization techniques. Int. J. Mach. Tools Manuf. 33(2), 297 (1993)

    Article  Google Scholar 

  27. Yang W.H., Tarng Y.S.: Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Proces. Tech. 84, 122 (1998)

    Article  Google Scholar 

  28. Singh H., Kumar P.: Optimizing cutting force for turned parts by Taguchi’s parameter design approach. Indian J. Eng. Mater. Sci. 12, 97 (2005)

    Google Scholar 

  29. Korkut I., Kucuk Y.: Experimental analysis of the deviation from circularity of bored hole based on the Taguchi method. Strojniski Vestnik J. Mech. Eng. 56(5), 340 (2010)

    Google Scholar 

  30. Sandvik Coromant Catalogue. Metal Cutting Techical Guide-General Turning, A-22 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilmaz Kucuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucuk, Y., Korkut, I. Using the Experimental Design Method to Optimize the Conicity and Circularity of Bored Holes. Arab J Sci Eng 37, 1077–1082 (2012). https://doi.org/10.1007/s13369-012-0215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0215-4

Keywords

Navigation