Skip to main content

Advertisement

Log in

Estimating Penman–Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Penman–Monteith equation (PM) is widely recommended because of its detailed and comprehensive theoretical base. This method is recommended by FAO as the sole method to calculate reference evapotranspiration (ET0) and for evaluating the other methods. The objective of this study is to compare PM using hybrid of artificial neural networks and algorithm genetic (ANN–GA) and artificial neural networks (ANNs) models for estimating ET0 only on the basis of the meteorological data. ANNs are effective tools to model nonlinear systems and require fewer inputs, and GAs are strong tools to reach the global optimal solution. The weather stations selected for this study are located in Esfahan Province (center of Iran). The monthly meteorological data from 1951 to 2005 have been used for this study. The meteorological data were maximum, average and minimum air temperatures, relative humidity, sunshine duration and wind speed. The ANNs and ANN–GA models learned to forecast PM reference evaporation (PM ET0). The results of this research indicate that ANN–GA predicted PM ET0 better than ANNs model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen R.G., Jensen M.E., Wright J.L., Burman R.D.: Operational estimates of reference evapotranspiration. Agron. J. 81, 650–662 (1989)

    Article  Google Scholar 

  2. Penman H.L.: Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Edinburgh 193, 120–146 (1948)

    Google Scholar 

  3. Jensen M.E., Burman R.D., Allen R.G.: Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No 70. ASCE, NY (1990)

    Google Scholar 

  4. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.: Crop evapotranspiration. Guidelines for computing crop water requirement. Irrigation and Drainage Paper No. 56 (1998)

  5. Droogers P., Allen R.G.: Estimating reference evapotranspiration under inaccurate data conditions. J. Irrig. Drain. Eng. ASCE 16, 33–45 (2002)

    Google Scholar 

  6. Sudheer K.P., Gosain A.K., Ramasastri K.S.: Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. Irrig. Drain. Eng. ASCE 129, 214–218 (2003)

    Article  Google Scholar 

  7. Bruton J.M., McClendon R.W., Hoogenboom G.: Estimating daily pan evaporation with artificial neural networks. Trans. ASAE 43, 491–496 (2000)

    Google Scholar 

  8. Trajkovic S., Todorovic B., Stankovic M.: Forecasting reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Eng. ASCE 129, 454–457 (2003)

    Article  Google Scholar 

  9. Keskin M.E., Terzi O.: Artificial neural networks models of daily pan evaporation. J. Hydrol. Eng. ASCE 11, 65–70 (2006)

    Article  Google Scholar 

  10. Kisi O.: Generalized regression neural networks for evapotranspiration modeling. Hydrol. Sci. J. 51, 1092–1105 (2006)

    Article  Google Scholar 

  11. Kisi O.: Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol. Process. 21, 1925–1934 (2007)

    Article  Google Scholar 

  12. Parasuraman K., Elshorbagy A., Carey S.K.: Modeling the dynamics of the evapotranspiration using genetic programming. Hydrol. Sci. J. 52, 563–578 (2004)

    Article  Google Scholar 

  13. Sudheer K.P., Gosain A.K., Rangan D.M., Saheb S.M.: Modeling evaporation using an artificial neural network algorithm. Hydrol. Process. 16, 3189–3202 (2002)

    Article  Google Scholar 

  14. Kisi O.: Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol. 329, 636–646 (2006)

    Article  Google Scholar 

  15. Kumar M., Raghuwanshi N.S., Singh R., Wallender W.W., Pruitt W.O.: Estimating evapotranspiration using artificial neural network. J. Irrig. Drain. Eng. ASCE 128, 224–233 (2002)

    Article  Google Scholar 

  16. Kisi O., Ozturk O.: Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. J. Irrig. Drain. Eng. ASCE 133, 368–379 (2007)

    Article  Google Scholar 

  17. Dingman S.: Physical Hydrology. Macmillan, New York (1994)

    Google Scholar 

  18. Fausset L.V.: Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice Hall, Upper Saddle River (1994)

    Google Scholar 

  19. Neurosolution 5. Ward systems group, Inc., MD, USA (2008)

  20. Garson G.D.: Interpreting neural-network connection weights. Exp. Syst. Appl. 6, 47–51 (1991)

    Google Scholar 

  21. Cook D.F., Ragsdale C.T., Major R.L.: Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 3, 391–396 (2000)

    Article  Google Scholar 

  22. Petridis, V.; Kazarlis, S.; Felelis, A.: A hybrid genetic algorithm for training neural networks. In: Proceedings of ICANNs 92, Brighton, pp. 953–956 (1992)

  23. Odhiambo L.O., Yoder D.C., Hines J.W.: Optimization of fuzzy evapotranspiration model through neural training with input–output examples. J. Transp. Eng. ASCE 44, 1625–1633 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Alireza Gohari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslamian, S.S., Gohari, S.A., Zareian, M.J. et al. Estimating Penman–Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study. Arab J Sci Eng 37, 935–944 (2012). https://doi.org/10.1007/s13369-012-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0214-5

Keywords

Navigation