Arabian Journal for Science and Engineering

, Volume 37, Issue 2, pp 481–488 | Cite as

Nano-Engineering of Concrete

Research Article - Civil Engineering


This paper summarizes recent developments in the field of nanoindentation analysis of highly heterogeneous composites. The fundamental idea of the proposed approach is that it is possible to assess nanostructure from the implementation of micromechanics-based scaling relations for a large array of nanoindentation tests on heterogeneous materials. We illustrate this approach through the application to calcium-silicate-hydrate (C-S-H), the binding phase of all cement-based materials. For this important class of materials, we show that C-S-H exists in at least three structurally distinct but compositionally similar forms: low density, high density and ultra-high density. These three forms differ merely in the packing density of 5-nm sized particles. The proposed approach also gives access to the solid particle properties of C-S-H, which can now be compared with results from atomistic simulations. By way of conclusion, we show how this approach provides a new way of analyzing complex hydrated nanocomposites, in addition to classical microscopy techniques and chemical analysis. This approach will turn out invaluable in our quest of adding the necessary “green” value to a commodity, concrete, by nano-engineering higher strength and toughness from first principles.


Calcium-silicate-hydrate Concrete Nano-engineering Nanoindentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACI Committee 318: Building code requirements for reinforced concrete (ACI 318-95). American Concrete Institute, Farmington Hills (1995)Google Scholar
  2. 2.
    Bobko C., Ulm F.-J.: The nano-mechanical morphology of shale. Mech. Mater 40(4–5), 318–337 (2008)CrossRefGoogle Scholar
  3. 3.
    Cariou S., Ulm F.J., Dormieux L.: Hardness-packing density scaling relations for cohesive-frictional porous materials. J. Mech. Phys. Solids 56, 924–952 (2008)MATHCrossRefGoogle Scholar
  4. 4.
    Constantinides G., Ulm F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concr. Res 34(1), 67–80 (2004)CrossRefGoogle Scholar
  5. 5.
    Constantinides G., Ulm F.-J.: The nanogranular nature of C-S-H. J. Mech. Phys. Solids 55(1), 64–90 (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Constantinides G., Ulm F.-J., Van Vliet K.: On the use of nanoindentation for cementitious materials. Mater. Struct 36(3), 191–196 (2003)CrossRefGoogle Scholar
  7. 7.
    Dalgleish B.J., Ibe K.: “Thin foil studies of hydrated cements. ” Cement and Concrete Research 11, 729–739 (1981)CrossRefGoogle Scholar
  8. 8.
    DeJong M.J., Ulm F.-J.: The nanogranular behavior of C-S-H at elevated temperatures (up to 700°C). Cem. Concr. Res 37(1), 1–12 (2007)CrossRefGoogle Scholar
  9. 9.
    Donev A., Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)CrossRefGoogle Scholar
  10. 10.
    Dormieux L., Kondo D., Ulm F.-J.: Microporomechanics. Wiley, UK (2006)MATHCrossRefGoogle Scholar
  11. 11.
    Gathier, B.; Ulm, F.-J.: Multiscale strength homogenization - application to shale nanoindentation. MIT-CEE Res. Rep. R08-01, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge (2008)Google Scholar
  12. 12.
    Groves G.W.: TEM studies of cement hydration. Mat. Res. Soc. Symposium Proc 85, 3–12 (1987)CrossRefGoogle Scholar
  13. 13.
    Helmuth, R.A.; Turk, D.H.;: Elastic moduli of hardened portland cement and tricalcium silicate pastes: effect of porosity. In: Symposium on structure of Portland cement paste and concrete, pp. 135–144 (1966)Google Scholar
  14. 14.
    Jaeger H.M., Nagel S.R.: Physics of granular state. Science 255(5051), 1523–1531 (1992)CrossRefGoogle Scholar
  15. 15.
    Jennings H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res 30, 101–116 (2000)CrossRefGoogle Scholar
  16. 16.
    Jennings H.M.: Colloid model of C-S-H and implications to the problem of creep and shrinkage. Mat. Struct 37((265), 59–70 (2004)CrossRefGoogle Scholar
  17. 17.
    Jennings H.M.: Refinements to colloid model of C-S-H in cement: CM-II. Cem Concr Res 38((3), 275–289 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jennings H.M., Thomas J.J., Gevrenov J.S., Constantinides G., Ulm F-J.: A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res 37((3), 329–336 (2007)CrossRefGoogle Scholar
  19. 19.
    Mondal P., Shah S.P., Marks L.: A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cem. Concr. Res 37(10), 1440–1444 (2007)CrossRefGoogle Scholar
  20. 20.
    Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res 7(6), 1564–1583 (1992)CrossRefGoogle Scholar
  21. 21.
    Pellenq R.J.M. et al.: A realistic molecular model of cement hydrates. PNAS 106(38), 16102–16107 (2009)CrossRefGoogle Scholar
  22. 22.
    Powers, T.C.; Brownyard, T.L.: Studies of the physical properties of hardened Portland cement paste. Bull. 22, Res. Lab. of Portland Cement Association, Skokie, IL, U.S. J. Am. Concr. Inst. (Proc.), 43 (1947) 101–132, 249–336, 469–505, 549–602, 669–712, 845–880, 933–992 (reprint) (1947)Google Scholar
  23. 23.
    Richardson I.G.: The nature of C-S-H in hardened cements. Cem. Concr. Res 29, 1131–1147 (1999)CrossRefGoogle Scholar
  24. 24.
    Richardson I.G.: “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res 34, 1733–1777 (2004)CrossRefGoogle Scholar
  25. 25.
    Richardson I.G., Rodger S.A., Groves G.W.: The porosity and pore structure of hydrated cement pastes as revealed by electron microscopy techniques. Mat. Res. Soc. Symp. Proc 137, 313–318 (1989)CrossRefGoogle Scholar
  26. 26.
    Sanahuja J., Dormieux L., Chanvillard G.: Modelling elasticity of a hydrating cement paste. Cem. Concr. Res 37, 1427–1439 (2007)CrossRefGoogle Scholar
  27. 27.
    Scrivener K.L., Patell H.H., Pratt P.L., Parrott L.J.: Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis. Mat. Res. Soc. Symp. Proc 85, 67–76 (1985)CrossRefGoogle Scholar
  28. 28.
    Sloane N.J.A.: Kepler’s conjecture confirmed. Nature 395, 435–436 (1998)CrossRefGoogle Scholar
  29. 29.
    Taplin J.H.: A method for following the hydration reaction in portland cement paste. Aust. J. Appl. Sci 10, 329–345 (1959)Google Scholar
  30. 30.
    Taylor H.F.W.: Studies on the chemistry and microstructure of cement pastes. Proc. Brit. Ceram. Soc 35, 65–82 (1984a)Google Scholar
  31. 31.
    Taylor H.F.W.: Newbury DE, An electron microprobe study of a mature cement paste. Cem. Concr. Res 14, 565–573 (1984b)CrossRefGoogle Scholar
  32. 32.
    Tennis P.D., Jennings H.M.: A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes. Cem. Concr. Res 30, 855–863 (2000)CrossRefGoogle Scholar
  33. 33.
    Thomas, J.J.; Jennings, H.M.; Allen, A.J.: The surface area of cement paste as measured by neutron scattering: evidence for two C-S-H morphologies. Cem. Concr. Res. 28(6), 897–905Google Scholar
  34. 34.
    Ulm, F.J.; Jennings, H.M.: Does C-S-H particle shape matter? A discussion of the paper ‘Modelling elasticity of a hydrating cement paste’, by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427–1439. Cem. Concr. Res. 38(8–9), 1126–1129 (2008)Google Scholar
  35. 35.
    Ulm F-J., Constantinides G., Heukamp F.H.: Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Mater. Struct 37((265), 43–58 (2004)CrossRefGoogle Scholar
  36. 36.
    Ulm F.J., Vandamme M., Bobko C., Ortega J.A., Tai K., Ortiz C.: Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J. Am. Ceram. Soc 90(9), 2677–2692 (2007)CrossRefGoogle Scholar
  37. 37.
    Vandamme M., Ulm F-J., Fonollosa P.: Nanogranular packing of C-S-H at substochiometric conditions. Cem. Concr. Res 40, 14–26 (2010)CrossRefGoogle Scholar
  38. 38.
    Verbeck, G.J.; Helmuth, R.A.: Structures and physical properties of cement paste. In: 5th Internaional congress cement chemistry, Tokyo, pp. 1–44 (1969)Google Scholar
  39. 39.
    Viehland D., Li J.F., Yuan L.J., Xu Z.K.: Mesostructure of calcium silicate hydrate (C-S-H) gels in portland-cement paste-a short range ordering nanocrystallinity and local compositional order. J. Am. Ceram. Soc 79(7), 1731–1744 (1996)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2012

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations