Skip to main content

Advertisement

Log in

Photochemical Conversion of Solar Energy into Electrical Energy in an Eosin–Mannose System

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Solar energy has been converted into electrical energy using an eosin–mannose system in a photogalvanic cell. The system uses solutions of sufficiently low concentration to be commercially viable. The photopotential and photocurrent generated by the system were 758.0 mV and 170.0 μA, respectively, while the maximum power and power point were 128.86 and 67.20 μW, respectively. The observed conversion efficiency was 0.6461% and the fill factor was 0.3739 against an absolute value of 1.0. The developed photogalvanic cell can operate for 75 min in the dark following irradiation for 120 min, i.e., the observed storage capacity is 62.5%. A mechanism for the photogeneration of electricity in the system has also been proposed. The developed photogalvanic cell exhibits appreciable conversion efficiency and storage capacity of solar energy, which along with its inexpensive construction make it promising for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rideal E.K., Williams E.G.: The action of light on ferrous–ferric–iodide-equilibrium. J. Chem. Soc. Trans. 127, 258–269 (1925)

    Article  Google Scholar 

  2. Rabinowitch E.: The photogalvanic effect I: the photochemical properties of the thionine–iron system. J. Chem. Phys. 8, 551–559 (1940)

    Article  Google Scholar 

  3. Rabinowitch E.: The photogalvanic effect II: the photogalvanic properties of thionine–iron system. J. Chem. Phys. 8, 560–566 (1940)

    Article  Google Scholar 

  4. Albery W.J., Archer M.D.: Optimum efficiency of photogalvanic cells for solar energy conversion. Nature 270, 399–402 (1977)

    Article  Google Scholar 

  5. Bolton J.R.: Photochemical conversion and storage: an historical perspective. Solar Energy Mater. Solar Cells 38, 543–551 (1995)

    Article  Google Scholar 

  6. Bolton J.R., Hall D.O.: Photochemical conversion and storage of solar energy. Ann. Rev. Energy 4, 353–401 (1979)

    Article  Google Scholar 

  7. Balzani V., Credi A., Venturi M.: Photochemical conversion of solar energy. J. ChemSusChem. 1, 26–58 (2008)

    Article  Google Scholar 

  8. Kalyanasundaram K., Gratzel M.: Photochemical conversion and storage of solar energy. J. Photochem. Photobiol. A Chem. 40, 807–822 (2008)

    Google Scholar 

  9. Dennis D.D., Kenneth K.K.G., Stevenson L., Edward R.B., James H.H.: Photoredox reactions of metal ions for photochemical solar energy conversion. J. Solid State Chem. 22, 63–70 (1977)

    Google Scholar 

  10. Pan R.L., Bhardwaj R., Gross E.L.: Photochemical energy conversion by a thiazine photosynthetic photoelectrochemical cell. J. Chem. Tech. Biotechnol. 33, 39–48 (1983)

    Article  Google Scholar 

  11. Gangotri K.M., Regar O.P.: Use of azine dye as a photosensitizer in solar cells: different reductants–safranine system. Int. J. Energy Res. 21, 1345–1350 (1998)

    Article  Google Scholar 

  12. Murthy A.S.N., Reddy K.S.: Photochemical energy conversion studies in systems containing methylene blue. Int. J. Energy Res. 3, 205–210 (1979)

    Article  Google Scholar 

  13. Gangotri K.M., Meena R.C.: Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: oxalic acid–methylene blue system. J. Photochem. Photobiol. A Chem. 141, 175–177 (2001)

    Article  Google Scholar 

  14. Jana A.K., Bhowmik B.B.: Enhancement in power output of solar cells consisting of mixed dye. J. Photochem. Photobiol. A Chem. 122, 53–56 (1999)

    Article  Google Scholar 

  15. Gangotri K.M., Lal C.: Studies in photogalvanic effect and mixed dyes system: EDTA–methylene blue–toludiene blue system. Int. J. Energy Res. 24, 365–371 (2000)

    Article  Google Scholar 

  16. Lal C.: Use of mixed dyes in a photogalvanic cell for solar energy conversion and storage: EDTA–thionine + azur-B system. J. Power Sour. 164, 926–930 (2007)

    Article  Google Scholar 

  17. Groenen E.J.J., De Groot M.S., De Ruiter R., De Wit N.: Triton X-100 micelles in the ferrous/thionine photogalvanic cell. J. Phys. Chem. 88, 1449–1454 (1984)

    Article  Google Scholar 

  18. Khamesra S., Ameta R., Bala M., Ameta S.C.: Use of micelles in photogalvanic cell for solar energy conversion and storage: azur A-glucose system. Int. J. Energy Res. 14, 163–167 (1990)

    Article  Google Scholar 

  19. Pramila S., Gangotri K.M.: Use of anionic micelles in photogalvanic cells for solar energy conversion and storage dioctylsulfosuccinate–mannitol–safranine system. Energy Sour. Part A 29, 1253–1257 (2007)

    Article  Google Scholar 

  20. Genwa K.R., Genwa M.: Photogalvanic cell: a new approach for green and sustainable chemistry. Solar Energy Mater. Solar Cells 92, 522–529 (2008)

    Article  Google Scholar 

  21. Genwa K.R., Kumar A., Sonel A.: Photogalvanic solar energy conversion study with photosensitizers toluidine blue and malachite green in presence of NaLS. Appl. Energy 86, 1431–1436 (2009)

    Article  Google Scholar 

  22. Gangotri K.M., Indora V.: Studies in the photogalvanic effect in mixed reductant system for solar energy conversion and storage: dextrose and EDTA azur A system. Solar Energy 84, 271–276 (2010)

    Article  Google Scholar 

  23. Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy eosin-D-xylose system. Energy Sour. Part A 33, 2104–2112 (2011)

    Article  Google Scholar 

  24. Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy eosin–fructose system. Environ. Prog. Sustain. Energy 30, 493–499 (2011)

    Article  Google Scholar 

  25. Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy eosin–arabinose system. Int. J. Electr. Power Energy Syst. A 32, 1106–1110 (2010)

    Article  Google Scholar 

  26. Gangotri P., Gangotri K.M.: Studies of the micellar effect on photogalvanics: solar energy conversion and storage in EDTA–safranine O CTAB system. Arab. J. Sci. Eng. 35, 19–28 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Bhimwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhimwal, M.K., Gangotri, K.M. Photochemical Conversion of Solar Energy into Electrical Energy in an Eosin–Mannose System. Arab J Sci Eng 37, 19–26 (2012). https://doi.org/10.1007/s13369-011-0155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0155-4

Keywords

Navigation