Skip to main content
Log in

Effect of electro-magneto-hemodynamic environs on dispersion of solute in the peristaltic motion through a channel with chemical reaction, wall properties and porous medium

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The present paper sheds some light on the problem of dispersal of a solute in electro-magneto-hydrodynamic peristaltic flow of Jeffrey fluid in a uniform channel filled with porous medium and compliant walls. Using long wavelength approximation and Taylor’s limiting condition, the homogeneous and heterogeneous chemical reaction have been analysed. The effects of physiological parameters such as the electro osmotic velocity, electro kinetic, Jeffrey fluid parameter, Hartmann number, Darcy measure, velocity slip parameter and the wall complaint parameters on the Peristaltic movement have also been investigated. The numerical results have been computed and visibly discussed with respect to assorted values of pertinent physical parameters. It pointed out first time, that the average equivalent dispersion coefficient (dispersion of a solute) is significantly reduced due to increase in the electro osmotic velocity and electro-kinetic parameter. Further, the chemical reaction parameters and Hartmann number slow down the dispersion mechanism but Darcy number, velocity slip parameter and amplitude ratio parameters tend to increase the average equivalent dispersion coefficient. Another notable result is that the damping parameter of the wall \(\left( {E_{2} } \right)\) and wall mass characteristic parameter \(\left( {E_{1} } \right)\) increase the dispersion nature of the solute whereas it is reduced by increasing the rigidity nature of the wall \(\left( {E_{3} } \right)\), the spring stiffness parameter of the wall (\(E_{5}\)) and the wall tension (\(E_{4}\)). Further, dispersion nature on different waveforms in the peristaltic transport has been studied. The present analytical study provides useful information to artificial bio-processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Abdelsalam SI, Bhatti MM (2020) Anomalous reactivity of thermo bioconvective nanofluid towards oxytactic micro-organisms. Appl Math Mech 41:711–724

    Article  Google Scholar 

  2. Abd Elmaboud Y, Abdelsalam SI (2019) DC/AC magnetohydrodynamic micropump of a generalized Burger’s fluid in an annulus. Phys Scr 94:115209

  3. Abd Elmaboud Y, Mekheimer KhS (2011) Non-linear peristaltic transport of a second order fluid through a porous medium. Appl Math Model 35:2695–2710

    Article  Google Scholar 

  4. Abumandour RM, Eldesoky IM, Kamel MH, Ahmed MM, Abdelsalam SI (2020) Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Z Naturforsch.A 75:727–738

  5. Akbar NS (2015) Application of Eyring- Powell fluid model in peristalsis with nano particles. J Comput Theor Nanosci 12:94–100

    Article  CAS  Google Scholar 

  6. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc A 235:67–77

    Google Scholar 

  7. Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electro-osmosis- modulated peristaltic transport in microfluidic channels. Phys Fluids. 28:052002

  8. Bhatti MM, Ellahi R, Zeeshan A (2016) Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-Uniform rectangular duct having compliant walls. J Mol Liq 222:101–108

    Article  CAS  Google Scholar 

  9. Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743

    Article  Google Scholar 

  10. Fan LT, Hwang WS (1965) Dispersion of Ostwald-de Waele fluid in laminar flow through a cylindrical tube. Proc R Soc A 283:576–582

    Google Scholar 

  11. Fan LT, Wang CB (1966) Dispersion of matter in non-Newtonian laminar flow through a circular tube. Proc R Soc A 292:203–208

    Google Scholar 

  12. Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669–675

    Article  Google Scholar 

  13. Ghoshal S (1971) Dispersion of solutes in non-Newtonian flows through a circular tube. Chem Eng Sci 26:185–188

    Article  CAS  Google Scholar 

  14. Ghosal S, Chen Z (2012) Electromigration dispersion in a capillary in the presence of electroosmotic flow. J Fluid Mech 697:436–454

    Article  CAS  Google Scholar 

  15. Gill WN, Sankarasubramanian R (1970) Exact analysis of unsteady convection diffusion. Proc R Soc A 316:341–350

    Google Scholar 

  16. Gill WN, Sankarasubramanian R (1971) Dispersion of a non-uniform slug in time-dependent flow. Proc R Soc A 322:101–117

    Google Scholar 

  17. Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S (2016) Electrokinetically modulated peristaltic transport of power-Law fluid. Microvasc Res 103:41–54

    Article  Google Scholar 

  18. Gupta PS, Gupta AS (1972) Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates. Proc R Soc A 330:59–63

    Google Scholar 

  19. Hunder RJ (1989) Foundations of Colloid science. Oxford University Press, UK

    Google Scholar 

  20. Katz S (1959) Chemical reactions catalysed on a tube wall. Chem Eng Sci 10:202–211

    Article  CAS  Google Scholar 

  21. Kang Y, Tan SC, Yang C, Huang X (2007) Electrokinetic pumping using packed microcapillary. Sens Actuators A Phys 133:375–382

    Article  CAS  Google Scholar 

  22. Khan AA, Tariq H (2018) Influence of wall properties on the peristaltic flow of dusty Walter’s B fluid, J Braz. Soc Mech Sci Eng 40:1–18

    Google Scholar 

  23. Kothandapani M, Pushparaj V, Prakash J (2018) Effect of magnetic field on peristaltic flow of a fourth- grade fluid in a tapered asymmetric channel, J. King saud University. Eng Sci 30:86–95

    Google Scholar 

  24. Kumar JP, Umavathi JC, Basavaraj A (2012) Effects of homogeneous and heterogeneous reactions on the dispersion of a solute for immiscible viscous fluids between two plates. J Appl Fluid Mech 5:13–22

    Google Scholar 

  25. Latham TW (1966) Fluid motions in peristaltic pump, M.S. Thesis, MIT

  26. Mallick B, Misra JC (2019) Peristaltic flow of Eyring Powell nanofluid under the action of an electromagnetic field. Eng Sci Technol An Int J 22:266–281

    Article  Google Scholar 

  27. Mandviwalla X, Archer R (2008) The influence of slip boundary conditions on peristaltic pumping in a rectangular channel. J Fluids Eng 130:124501–124511

    Article  Google Scholar 

  28. MKnight, T.E., C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey, (2001) Electro-osmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045–4049

    Article  Google Scholar 

  29. Mishra M, Ramachandra Rao A (2003) Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z angew Math Phys 54:532–550

    Article  Google Scholar 

  30. Mittra TK, Prasad SN (1973) On the influence of wall properties and Poiseuille flow in peristalsis. J Biomech 6:681–693

    Article  CAS  Google Scholar 

  31. Mustafa M, Hina S, Hayat T, Alsaedi A (2012) Influence of wall properties on the peristaltic flow of a nanofluid analytic and numerical solutions. Int J Heat Mass Transf 55:4871–4877

    Article  CAS  Google Scholar 

  32. Muthuraj R, Nirmala K, Srinivas S (2016) Influence of chemical reaction and wall properties on MHD peristaltic transport of a Dusty fluid with Heat and Mass transfer. Alex Eng J 55:597–611

    Article  Google Scholar 

  33. Rachid H, Ouazzani MT (2014) Interaction of pulsatile flow with peristaltic transport of a viscoelastic fluid: case of a Maxwell fluid. Int J Appl Mech 6:61–76

    Article  Google Scholar 

  34. Ramesh K (2016) Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Comput Methods Programs Biomed 135:1–14

    Article  CAS  Google Scholar 

  35. Ravi Kiran G, Radhakrishamacharya G (2013) Effect of dispersion of a solute in peristaltic flow of a Jeffrey fluid. Int J Sci Eng Res 4:2525–2530

    Google Scholar 

  36. Ravi Kiran G, Radhakrishamacharya G (2016) Effect of homogeneous and heterogeneous chemical reactions on peristaltic transport of an MHD micropolar fluid with wall effects. Math Mech Appl Sci 39:1349–1360

    Article  Google Scholar 

  37. Scherer PW, Shendalman LH, Greene NM (1972) Simultaneous diffusion and convection in single breath lung washout. Bull Math 34:393–412

    CAS  Google Scholar 

  38. Shah SH, andK.E. Cox, (1974) Dispersion of solutes in non-Newtonian laminar flow through a circular tube Eyring model fluid. Chem Eng Sci 29:1282–1286

    Article  Google Scholar 

  39. Sharp MK, Carare RO, Martin BA (2019) Dispersion in porous media in oscillatory flow between plates: application to intrathecal, periarterial and pararterial solute transport in the central nervous system. Fluids Barriers CNS 16:13

    Article  Google Scholar 

  40. Shit GC, Roy M (2015) Effect of slip velocity on peristaltic transport of magneto micropolar fluid through a porous non-uniform channel. Int J Appl Comput Math 1:121–141

    Article  Google Scholar 

  41. Shukla JB, Parihar RS, Rao BRP (1979) Dispersion in non-Newtonian fluids: effects of chemical reaction. Rheol Acta 18:740–748

    Article  CAS  Google Scholar 

  42. Shukla JB, Chandra P, Sharma R, Radhakrishnamacharya G (1988) Effects of peristaltic and longitudinal wave motion of the channel wall on movement of micro-organisms: application to spermatozoa transport. J Biomech 21:947–954

    Article  CAS  Google Scholar 

  43. Soloman RL, Hudson JL (1967) Homogeneous and heterogeneous reactions in tubular reactor. AIChE J 13:545–550

    Article  Google Scholar 

  44. Srivastava LM, andV.P. Srivastava, (1985) Peristaltic transport of a non-Newtonian fluid: application to the vas deferens and small intestine. Ann Biomed Eng 13:137–153

    Article  CAS  Google Scholar 

  45. Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc A 219:186–203

    CAS  Google Scholar 

  46. Taylor GI (1954) Dispersion of matter in turbulent flow through a pipe. Proc R Soc A 225:446–468

    Google Scholar 

  47. Tripathi D (2012) Peristaltic hemodynamic flow of Couple-Stress fluids through a porous medium with slip effect. Transp Porous Media 92:559–572

    Article  Google Scholar 

  48. Tripathi D, Bhushan S, Anwar Beg O (2016) Transverse magnetic field driven modification in unsteady peristaltic transport with electric double later effects, Colloids Surf A, Physio Chem Eng. Aspects 506:32–39

    Article  CAS  Google Scholar 

  49. Tripathi D, Yadav A, Anwar Beg O, Kumar R (2018) Study of microvascular non-Newtonian blood flow modulated by electroosmosis. Microvasc Res 117:28–36

    Article  Google Scholar 

  50. Walker RE (1964) Chemical reaction and diffusion in a catalytic tubular reactor. Phys Fluids 4:1211–1216

    Article  Google Scholar 

  51. Yin F, Fung YC (1969) Peristaltic waves in circular cylindrical tube. J Appl Mech 36:579–587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ponalagusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponalagusamy, R., Murugan, D. Effect of electro-magneto-hemodynamic environs on dispersion of solute in the peristaltic motion through a channel with chemical reaction, wall properties and porous medium. Korea-Aust. Rheol. J. 34, 69–90 (2022). https://doi.org/10.1007/s13367-022-00024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00024-z

Keywords

Navigation