Skip to main content
Log in

Comparison of the rheological behavior of particulate suspensions in power-law and Newtonian fluids by combined improved smoothed profile-lattice Boltzmann methods

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In the present work, a numerical algorithm based on a combination of the lattice Boltzmann method (LBM) and the improved smoothed profile method (iSPM) has been proposed to study the motion of one, two and many circular particles in a non-Newtonian fluid. At first, the velocity profile of the non-Newtonian fluid at various power law indexes (n) was analyzed and the findings were compared with the numerical results of the previous works. Then, the motion of one circular cylinder and the hydrodynamic interactions between two particles in a shear flow were investigated. It was observed that Reshear, p had no important impact on the rotation of a single cylinder. In the two particles interaction, increasing the shear rate caused the particles to tumble on each other more closely and during a longer time. Therefore, the effective viscosity of a particulate suspension was considered for different Reynolds numbers and solid volume fractions, showing a satisfactory agreement with the previously published data. The results, therefore, showed that inertia increased the particles contribution to the effective viscosity of the suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

s αβ :

Strain rate tensor

∇:

Gradient operator

\({\partial \over {\partial t}}\) :

Partial time derivative

Π:

Stress tensor of the fluid

υ :

Kinematic viscosity

m :

Consistent factor

n :

Power-law index

\(\dot \gamma \) :

Shear rate

Re pl :

Reynolds number for power-law fluid

Re shear, p :

Particle-based shear Reynolds number

U c :

Characteristic velocity

D :

Characteristic length

f α :

Density distribution functions

τ :

Dimensionless relaxation time

f eq α :

Equilibrium density distribution functions

e α :

Discrete velocity vector

Δt :

Time step

x :

Coordinates of the grid points

c s :

Speed of sound

ω α :

Weight coefficient

σ αβ :

Stress tensor

´ αβ :

Kronecker delta

P :

Pressure

η :

Power-law viscosity

f neq α :

Non-equilibrium density distribution functions

Φ(x, t):

Particle concentration function

ζ i :

Interfacial thickness of the ith particle

N p :

Numbers of particles

u p(x, t):

Particle velocity

u(x, t):

Velocity field

p(x, t):

Density field

F H :

Solid-fluid hydrodynamic force

T H :

Solid-fluid hydrodynamic torque

M p :

Particle mass

F c :

Collision force

F ext :

External force

T est :

External torque

I p :

Particle moment of the inertia tensor

V n i :

Translational velocity

ω n i :

Angular velocity

u′ :

Fluctuating velocity

\({\boldsymbol{\bar u}}\) :

Average velocity

a :

Acceleration

α i :

Angular acceleration

u :

Volume average velocity gradient

F p ij :

Collision force between a particle and other particles

F wij :

Collision force between a particle and wall

R i :

Position of ith particle

R j :

Position of jth particle

R wj :

Wall positions

ε w,ε p :

Stiffness coefficients

c tj :

Force scale

Σij(p):

Particle stress

σ :

Local stress

Σ xy :

Bulk stress

μ eff :

Effective viscosity

U w :

Wall velocity

φ :

Solid volume fraction

References

  • Aharonov, E. and D.H. Rothman, 1993, Non-Newtonian flow (through porous media): A lattice-Boltzmann method, Geophys. Res. Lett. 20, 679–682.

    Article  Google Scholar 

  • Alghalibi, D., I. Lashgari, L. Brandt, and S. Hormozi, 2018, Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids, J. Fluid Mech. 852, 329–357.

    Article  CAS  Google Scholar 

  • Batchelor, G.K., 1970, The stress system in a suspension of force-free particles, J. Fluid Mech. 41, 545–570.

    Article  Google Scholar 

  • Bell, B.C. and K..S. Surana, 1994, p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow, Int. J. Numer. Methods Fluids 18, 127–162.

    Article  CAS  Google Scholar 

  • Bharti, R.P., R.P. Chhabra, and V. Eswaran, 2007, Two-dimensional steady poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: wall effects and drag coefficients, Ind. Eng. Chem. Res. 46, 3820–3840.

    Article  CAS  Google Scholar 

  • Brady, J.F and G. Bossis, 1988, Stokesian dynamics, Annu. Rev. Fluid Mech. 20, 111–157.

    Article  Google Scholar 

  • Chai, Z., B. Shi, Z. Guo, and F. Rong, 2011, Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech. 166, 332–342.

    Article  CAS  Google Scholar 

  • Chhabra, R.P., 2007, Bubbles, Drops, and Particles in Non-Newtonian fluids, CRC Taylor & Francis, Boca Raton.

    Google Scholar 

  • Chevalier, T., S. Rodts, X. Chateau, C. Chevalier, and P. Coussot, 2014, Breaking of non-Newtonian character in flows through a porous medium, Phys. Rev E 89, 023002.

    Article  CAS  Google Scholar 

  • Delouei, A.A., M. Nazari, M.H. Kayhani, S.K. Kang, and S. Succi, 2016, Non-Newtonian articulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach, Physica A. 447, 1–20.

    Article  Google Scholar 

  • Einstein, A., 1906, A new determination of molecular dimensions, Ann. Phys. 19, 289–306.

    Article  CAS  Google Scholar 

  • Feng, Z.G. and E.E. Michaelides, 2004, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys. 195, 602–628.

    Article  Google Scholar 

  • Gabbanelli, S., G. Drazer, and J. Koplik, 2005, Lattice Boltzmann method for non-Newtonian (power-law) fluids, Phys. Rev E 72, 046312.

    Article  Google Scholar 

  • Ghia, U., K.N. Ghia, and C.T. Shin, 1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48, 387–411.

    Article  Google Scholar 

  • Jafari, S., R. Yamamoto, and M. Rahnama, 2011, Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions, Phys. Rev. E 83, 026702.

    Article  Google Scholar 

  • Jahanshahi Javaran, E., M. Rahnama, and S. Jafari, 2013, Investigating the applicability of combined lattice Boltzmann-smoothed profile methods in particulate systems, Part. Sci. Technol. 31, 643–652.

    Article  CAS  Google Scholar 

  • Krieger, I.M. and T.J. Dougherty, 1959, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. 3, 137–152.

    Article  CAS  Google Scholar 

  • Krieger, I.M., 1963, A dimensional approach to colloid rheology, Trans. Soc. Rheol. 7, 101–109.

    Article  Google Scholar 

  • Kromkamp, J., D. van den Ende, D. Kandhaid, R. van den Smana, and R. Boom, 2006, Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow, Chem. Eng. Sci. 61, 858–873.

    Article  CAS  Google Scholar 

  • Kromkamp, J., D.T.M. van den Ende, D. Kandhai, R.G.M. van der Smani, and R.M. Boom, 2005, Shear-induced self-diffusion and microstructure in non-Brownian suspensions at nonzero Reynolds numbers, J. Fluid Mech. 529, 253–278.

    Article  CAS  Google Scholar 

  • Kulkarni, P.M. and J.F. Morris, 2008, Suspension properties at finite Reynolds number from simulated shear flow, Phys. Fluids 20, 040602.

    Article  Google Scholar 

  • Ladd, A.J.C., 1994a, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285–309.

    Article  CAS  Google Scholar 

  • Ladd, A.J.C., 1994b, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271, 311–339.

    Article  CAS  Google Scholar 

  • Luo, X., M.R. Maxey, and G.E. Karniadakis, 2009, Smoothed profile method for particulate flows: Error analysis and simulations, J. Comput. Phys. 228, 1750–1769.

    Article  Google Scholar 

  • Mendu, S.S. and P.K. Das, 2012, Flow of power-law fluids in a cavity driven by the motion of two facing lids — A simulation by lattice Boltzmann method, J. Non-Newton. Fluid Mech. 175–176, 10–24.

    Article  Google Scholar 

  • Mino, Y., H. Shinto, S. Sakai, and H. Matsuyama, 2017, Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method, Phys. Rev. E 95, 043309.

    Article  Google Scholar 

  • Nakayama, Y. and R. Yamamoto, 2005, Simulation method to resolve hydrodynamic interactions in colloidal dispersions, Phys. Rev. E 71, 036707.

    Article  Google Scholar 

  • Neofytou, P., 2005, A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Adv. Eng. Softw. 36, 664–680.

    Article  Google Scholar 

  • Pal, R., 2015, Rheology of suspensions of solid particles in power-law fluids, Can. J. Chem. Eng. 93, 166–173.

    Article  CAS  Google Scholar 

  • Qi, Z., S. Kuang, L. Rong, and A. Yu, 2018, Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow, Powder Technol. 326, 208–221.

    Article  CAS  Google Scholar 

  • Shakib-Manesh, A., P. Raiskinmäki, A. Koponen, M. Kataja, and J. Timonen, 2002, Shear stress in a Couette flow of liquid-particle suspensions, J. Stat. Phys. 107, 67–84.

    Article  Google Scholar 

  • Succi, S., 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York.

    Google Scholar 

  • Tao, S., Z. Guo, and L.P. Wang, 2017, Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid, Powder Technol. 315, 126–138.

    Article  CAS  Google Scholar 

  • Taylor, G.I., 1932, The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 138, 41–48.

    CAS  Google Scholar 

  • Wang, C.H. and J.R. Ho, 2011, A lattice Boltzmann approach for the non-Newtonian effect in the blood flow, Comput. Math. Appl. 62, 75–86.

    Article  Google Scholar 

  • Yun, B.M., L.P. Dasi, C.K. Aidun, and A.P. Yoganathan, 2014, Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method, J. Fluid Mech. 743, 170–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Jahanshahi Javaran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tazangi, H.R., Goharrizi, A.S. & Javaran, E.J. Comparison of the rheological behavior of particulate suspensions in power-law and Newtonian fluids by combined improved smoothed profile-lattice Boltzmann methods. Korea-Aust. Rheol. J. 33, 293–306 (2021). https://doi.org/10.1007/s13367-021-0023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0023-z

Keywords

Navigation