Multi-chain slip-spring simulations for polyisoprene melts

Abstract

The multi-chain slip-spring (MCSS) model is a coarse-grained molecular model developed for efficient simulations of the dynamics of entangled polymers. In this study, we examined the model for the viscoelasticity of polyisoprene (PI) melts, for which the data are available in the literature. We determined the conversion factor for the molecular weight from the fitting of the molecular weight dependence of zero-shear viscosity. According to the obtained value, we calculated the linear viscoelasticity of several linear PI melts to determine the units of time and modulus. Based on the conversion factors thus determined, we predicted linear viscoelasticity of 6-arm star PI melts, and viscosity growth under high shear for linear PI melts. The predictions were in good agreement with the data, demonstrating the validity of the method. The conversion factors determined were consistent with those reported for polystyrene melts earlier, whereas the relations between the conversion factors are still unknown.

This is a preview of subscription content, log in to check access.

References

  1. Abdel-Goad, M., W. Pyckhout-Hintzen, S. Kahle, J. Allgaier, D. Richter, and L.J. Fetters, 2004, Rheological properties of 1,4-polyisoprene over a large molecular weight range, Macromolecules37, 8135–8144.

    CAS  Article  Google Scholar 

  2. Auhl, D., J. Ramirez, A.E. Likhtman, P. Chambon, and C. Ferny-hough, 2008, Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights, J. Rheol.52, 801–835.

    CAS  Article  Google Scholar 

  3. Baig, C., P.S. Stephanou, G. Tsolou, V.G. Mavrantzas, and M. Kröger, 2010a, Understanding dynamics in binary mixtures of entangled cis-1,4-polybutadiene melts at the level of primitive path segments by mapping atomistic simulation data onto the tube model, Macromolecules43, 8239–8250.

    CAS  Article  Google Scholar 

  4. Baig, C., V.G. Mavrantzas, and M. Kröger, 2010b, Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear, Macromolecules43, 6886–6902.

    CAS  Article  Google Scholar 

  5. Chappa, V.C., D.C. Morse, A. Zippelius, and M. Müller, 2012, Translationally invariant slip-spring model for entangled polymer dynamics, Phys. Rev. Lett.109, 148302.

    Article  CAS  Google Scholar 

  6. Costanzo, S., Q. Huang, G. Ianniruberto, G. Marrucci, O. Hassager, and D. Vlassopoulos, 2016, Shear and extensional rhe-ology of polystyrene melts and solutions with the same number of entanglements, Macromolecules49, 3925–3935.

    CAS  Article  Google Scholar 

  7. Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon press, Oxford.

    Google Scholar 

  8. Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, Inc, New York.

    Google Scholar 

  9. Gotro, J.T. and W.W. Graessley, 1984, Model hydrocarbon polymers: Rheological properties of linear polyisoprenes and hydrogenated polyisoprenes, Macromolecules17, 2767–2775.

    CAS  Article  Google Scholar 

  10. Kremer, K. and G.S. Grest, 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys.92, 5057–5086.

    CAS  Article  Google Scholar 

  11. Kumar, S. and R.G. Larson, 2001, Brownian dynamics simulations of flexible polymers with spring-spring repulsions, J. Chem. Phys.114, 6937–6941.

    CAS  Article  Google Scholar 

  12. Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-plathe, 2013, Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs, J. Chem. Phys. 138, 104907.

    Google Scholar 

  13. Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-Plathe, 2014, Reptation and constraint release dynamics in bidisperse polymer melts, J. Chem. Phys.141, 194904.

    Article  CAS  Google Scholar 

  14. Likhtman, A.E., 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rhe-ology, and diffusion, Macromolecules38, 6128–6139.

    CAS  Article  Google Scholar 

  15. Likhtman, A.E. and T.C.B. McLeish, 2002, Quantitative theory for linear dynamics of linear entangled polymers, Macromolecules35, 6332–6343.

    CAS  Article  Google Scholar 

  16. Masubuchi, Y., 2014, Simulating the flow of entangled polymers, Annu. Rev. Chem. Biomol. Eng.5, 11–33.

    CAS  Article  Google Scholar 

  17. Masubuchi, Y., 2015, Effects of degree of freedom below entanglement segment on relaxation of polymer configuration under fast shear in multi-chain slip-spring simulations, J. Chem. Phys.143, 224905.

    Article  CAS  Google Scholar 

  18. Masubuchi, Y., 2016a, Molecular Modeling for Polymer Rheology, In: Reference Module in Materials Science and Materials Engineering, Elsevier Inc., 1–7.

    Google Scholar 

  19. Masubuchi, Y., 2016b, PASTA and NAPLES: Rheology Simulator, In: Computer Simulation of Polymeric Materials, Springer Singapore, Singapore, 101–127.

    Google Scholar 

  20. Masubuchi, Y., 2018, Multichain slip-spring simulations for branch polymers, Macromolecules51, 10184–10193.

    CAS  Article  Google Scholar 

  21. Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2003, Entanglement molecular weight and frequency response of sliplink networks, J. Chem. Phys.119, 6925–6930.

    CAS  Article  Google Scholar 

  22. Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2004, Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model, Model. Simul. Mater. Sci. Eng.12, S91–S100.

    Article  CAS  Google Scholar 

  23. Masubuchi, Y., G. Ianniruberto, and G. Marrucci, 2018, Stress undershoot of entangled polymers under fast startup shear flows in primitive chain network simulations, Nihon. Reoroji. Gakk.46, 23–28.

    CAS  Article  Google Scholar 

  24. Masubuchi, Y., J.-I. Takimoto, K. Koyama, G. Iannir uber to, G. Marrucci, and F. Greco, 2001, Brownian simulations of a network of reptating primitive chains, J. Chem. Phys. 11 5, 4387–4394.

    Article  CAS  Google Scholar 

  25. Masubuchi, Y., M. Langeloth, M.C. Böhm, T. Inoue, and F. Müller-Plathe, 2016, A multichain slip-spring dissipative particle dynamics simulation method for entangled polymer solutions, Macromolecules49, 9186–9191.

    CAS  Article  Google Scholar 

  26. Masubuchi, Y. and T. Uneyama, 2018a, Comparison among multi-chain models for entangled polymer dynamics, Soft Matter14, 5986–5994.

    CAS  Article  Google Scholar 

  27. Masubuchi, Y. and T. Uneyama, 2018b, Comparison among multi-chain simulations for entangled polymers under fast shear, ECS Trans.88, 161–167.

    CAS  Article  Google Scholar 

  28. Masubuchi, Y. and T. Uneyama, 2019, Retardation of the reaction kinetics of polymers due to entanglement in the post-gel stage in multi-chain slip-spring simulations, Soft Matter15, 5109–5115.

    Article  Google Scholar 

  29. Matsumiya, Y., Y. Masubuchi, T. Inoue, O. Urakawa, C.-Y. Liu, E. van Ruymbeke, and H. Watanabe, 2014, Dielectric and vis-coelastic behavior of star-branched polyisoprene: Two coarsegrained length scales in dynamic tube dilation, Macromolecules47, 7637–7652.

    CAS  Article  Google Scholar 

  30. Matsushima, S., A. Takano, Y. Takahashi, and Y. Matsushita, 2017, Dynamic viscoelasticity of a series of poly(4-n-alkylstyrene)s and their alkyl chain length dependence, Polymer133, 137–142.

    CAS  Article  Google Scholar 

  31. Megariotis, G., G.G. Vogiatzis, A.P. Sgouros, and D.N. Theodorou, 2018, Slip spring-based mesoscopic simulations of polymer networks: Methodology and the corresponding computational code, Polymers10, 1156.

    Article  CAS  Google Scholar 

  32. Nafar Sefiddashti, M.H., B.J. Edwards, and B. Khomami, 2015, Individual chain dynamics of a polyethylene melt undergoing steady shear flow, J. Rheol.59, 119–153.

    CAS  Article  Google Scholar 

  33. Padding, J.T. and W.J. Briels, 2001, Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242, J. Chem. Phys.115, 2846–2859.

    CAS  Article  Google Scholar 

  34. Pan, G. and C.W. Manke, 2003, Developments toward simulation of entangled polymer melts by dissipative particle dynamics (DPD), Int. J. Mod. Phys. B17, 231–235.

    CAS  Article  Google Scholar 

  35. Ramírez-Hernández, A., B.L. Peters, L. Schneider, M. Andreev, J.D. Schieber, M. Müller, M. Kröger, and J.J. de Pablo, 2018, A detailed examination of the topological constraints of lamellae-forming block copolymers, Macromolecules51, 2110–2124.

    Article  CAS  Google Scholar 

  36. Ramírez-Hernández, A., B.L. Peters, M. Andreev, J.D. Schieber, and J.J. de Pablo, 2015, A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology, J. Chem. Phys. 143, 243147.

    Google Scholar 

  37. Ramírez-Hernández, A., F.A. Detcheverry, B.L. Peters, V.C. Chappa, K.S. Schweizer, M. Müller, and J.J. de Pablo, 2013, Dynamical simulations of coarse grain polymeric systems: Rouse and Entangled dynamics, Macromolecules46, 6287–6299.

    Article  CAS  Google Scholar 

  38. Sgouros, A.P., G. Megariotis, and D.N. Theodorou, 2017, SlipSpring Model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations, Macromolecules50, 4524–4541.

    CAS  Article  Google Scholar 

  39. Stephanou, P.S., C. Baig, G. Tsolou, V. G. Mavrantzas, and M. Kröger, 2010, Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model, J. Chem. Phys.132, 124904.

    Article  CAS  Google Scholar 

  40. Uneyama, T., 2011, Single chain slip-spring model for fast rhe-ology simulations of entangled polymers on GPU, Nihon. Reoroji. Gakk.39, 135–152.

    CAS  Article  Google Scholar 

  41. Uneyama, T. and Y. Masubuchi, 2012, Multi-chain slip-spring model for entangled polymer dynamics, J. Chem. Phys.137, 154902.

    Article  CAS  Google Scholar 

  42. Uneyama, T., Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A.A. Pathak, C.M. Roland, and C.M. Roland, 2009, A theoretical analysis of rheodielectric response of type-A polymer chains, J. Polym. Sci. Pt. B-Polym. Phys.47, 1039–1057.

    CAS  Article  Google Scholar 

  43. Vogiatzis, G.G., G. Megariotis, and D.N. Theodorou, 2017, Equation of state based slip spring model for entangled polymer dynamics, Macromolecules50, 3004–3029.

    CAS  Article  Google Scholar 

  44. Xu, X., J. Chen, and L. An, 2015, Simulation studies on architecture dependence of unentangled polymer melts, J. Chem. Phys.142, 074903.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-Aid for Scientific Research (A) (17H01152), (B) (19H01861) and for Scientific Research on Innovative Areas (18H04483) from JSPS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuichi Masubuchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on an invited lecture presented by the corresponding author at the 30th Anniversary Symposium of the Korean Society of Rheology (The 18th International Symposium on Applied Rheology (ISAR)), held on May 21-24, 2019, Seoul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masubuchi, Y., Uneyama, T. Multi-chain slip-spring simulations for polyisoprene melts. Korea-Aust. Rheol. J. 31, 241–248 (2019). https://doi.org/10.1007/s13367-019-0024-3

Download citation

Keywords

  • molecular simulations
  • rheology
  • entanglement