Advertisement

Korea-Australia Rheology Journal

, Volume 29, Issue 4, pp 269–279 | Cite as

A sequence of physical processes quantified in LAOS by continuous local measures

  • Ching-Wei Lee
  • Simon A. RogersEmail author
Articles

Abstract

The response to large amplitude oscillatory shear of a soft colloidal glass formed by a suspension of multiarm star polymers is investigated by means of well-defined continuous local measures. The local measures provide information regarding the transient elastic and viscous response of the material, as well as elastic extension via a shifting equilibrium position. It is shown that even when the amplitude of the strain is very large, cages reform and break twice per period and exhibit maximum elasticity around the point of zero stress. It is also shown that around the point of zero stress, the cages are extended by a nearly constant amount of approximately 5% at 1 rad/s and 7% at 10 rad/s, even when the total strain is as large as 420%. The results of this study provide a blueprint for a generic approach to elucidating the complex dynamics exhibited by soft materials under flow.

Keywords

LAOS nonlinear rheology colloidal glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids Vol. 1: Fluid mechanics, 2nd ed., John Wiley and Sons Inc., New York.Google Scholar
  2. Cho, K.S., K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large-amplitude oscillatory shear response, J. Rheol. 49, 747–758.CrossRefGoogle Scholar
  3. Christopoulou, C., G. Petekidis, B. Erwin, M. Cloitre, and D. Vlassopoulos, 2009, Ageing and yield behavior in model soft colloidal glasses, Philos. Trans. R. Soc. Lond, Ser. A- Math. Phys. Eng. Sci. 367, 5051–5071.CrossRefGoogle Scholar
  4. Coussot, P., 2014, Yield stress fluid flows: A review of experimental data, J. Non-Newton. Fluid Mech. 211, 31–49.CrossRefGoogle Scholar
  5. Dodge, J.S. and I.M. Krieger, 1971, Oscillatory shear of nonlinear fluids. I. Preliminary investigation, Trans. Soc. Rheol. 15, 589–601.CrossRefGoogle Scholar
  6. Erwin, B.M., D. Vlassopoulos, and M. Cloitre, 2010, Rheological fingerprinting of an aging soft colloidal glass, J. Rheol. 54, 915–939.CrossRefGoogle Scholar
  7. Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in largeamplitude oscillatory shear, J. Rheol. 52, 1427–1458.CrossRefGoogle Scholar
  8. Frenet, F., 1852, Sur les courbes à double courbure, J. Math. Pures Appl. 17, 437–447.Google Scholar
  9. Harris, J. and K. Bogie, 1967, The experimental analysis of nonlinear waves in mechanical systems, Rheol. Acta. 6, 3–5.CrossRefGoogle Scholar
  10. Havriliak, S. and S. Negami, 1967, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8, 161–210.CrossRefGoogle Scholar
  11. Helgeson, M.E., N.J. Wagner, and D. Vlassopoulos, 2007,Viscoelasticity and shear melting of colloidal star polymer glasses, J. Rheol. 51, 297–316.CrossRefGoogle Scholar
  12. Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.CrossRefGoogle Scholar
  13. Hyun, K., S.H. Kim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech. 107, 51–65.CrossRefGoogle Scholar
  14. Kim, J., D. Merger, M. Wilhelm, and M.E. Helgeson, 2014, Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear, J. Rheol. 58, 1359–1390.CrossRefGoogle Scholar
  15. Pipkin, A.C., 1972, Lectures on Viscoelasticity Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
  16. Poulos, A.S., J. Stellbrink, and G. Petekidis, 2013, Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear, Rheol. Acta 52, 785–800.CrossRefGoogle Scholar
  17. Radhakrishnan, R., and S.M. Fielding, 2017, Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of soft glassy material, arXiv preprint, arXiv:1704.08332v1.Google Scholar
  18. Rogers, S.A., 2017, In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity, Rheol. Acta 56, 501–525.CrossRefGoogle Scholar
  19. Rogers, S.A., B.M. Erwin, D. Vlassopoulos, and M. Cloitre, 2011, A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid, J. Rheol. 55, 435–458.CrossRefGoogle Scholar
  20. Rogers, S.A., D. Vlassopoulos, and P.T. Callaghan, 2008, Aging, yielding, and shear banding in soft colloidal glasses, Phys. Rev. Lett. 100, 128304.CrossRefGoogle Scholar
  21. Rogers, S.A. and M.P. Lettinga, 2012, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models, J. Rheol. 56, 1–25.CrossRefGoogle Scholar
  22. Roovers, J., L.L. Zhou, P.M. Toporowski, M. van der Zwan, H. Iatrou, and N. Hadjichristidis, 1993, Regular star polymers with 64 and 128 arms. Models for polymeric micelles, Macromolecules 26, 4324–4331.CrossRefGoogle Scholar
  23. Serret, J.-A., 1851, Sur quelques formules relatives à lathéorie des courbes à double courbure, J. Math. Pures Appl. 16, 193–207.Google Scholar
  24. van der Vaart, K., Y. ahmani, R. Zargar, Z. Hu, D. Bonn, and P. Schall, 2013, Rheology of concentrated soft and hard-sphere suspensions, J. Rheol. 57, 1195–1209.CrossRefGoogle Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations