Advertisement

Korea-Australia Rheology Journal

, Volume 29, Issue 4, pp 241–247 | Cite as

Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path

  • Chi Zhang
  • Mathias ReuferEmail author
  • Danila Gaudino
  • Frank ScheffoldEmail author
Articles

Abstract

Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l* and the absorption length la. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l* is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates (CR t , CR b ) to (l*, la). Based on this approach we can determine l* and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.

Keywords

diffusing wave spectroscopy microrheology linear viscoelasticity light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen-Addad, S. and R. Höhler, 2001, Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy, Phys. Rev. Lett. 86, 4700–4703.CrossRefGoogle Scholar
  2. Durian, D.J., D.A. Weitz, and D.J. Pine, 1991a, Multiple lightscattering probes of foam structure and dynamics, Science 252, 686–688.CrossRefGoogle Scholar
  3. Durian, D.J., D.A. Weitz, and D.J. Pine, 1991b, Scaling behavior in shaving cream, Phys. Rev. A 44, R7902–R7905.CrossRefGoogle Scholar
  4. Furst, E.M. and T.M Squires, 2017, Microrheology, Oxford University Press, Oxford.Google Scholar
  5. Kaplan, P.D., M.H. Kao, A.G. Yodh, and D.J. Pine, 1993, Geometric constraints for the design of diffusing-wave spectroscopy experiments, Appl. Optics 32, 3828–3836.CrossRefGoogle Scholar
  6. Lee, J.Y., J.W. Hwang, H.W. Jung, S.H. Kim, S.J. Lee, K. Yoon, and D.A. Weitz, 2013, Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy, Langmuir 29, 861–866.CrossRefGoogle Scholar
  7. Li, J., G. Dietsche, D. Iftime, S.E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, 2005, Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy, J. Biomed. Opt. 10, 044002.CrossRefGoogle Scholar
  8. Maret, G. and P.E. Wolf, 1987, Multiple light scattering from disordered media. The effect of Brownian motion of scatterers, Z. Phys. B-Condens. Mat. 65, 409–413.CrossRefGoogle Scholar
  9. Mason, T.G. and D.A. Weitz, 1995, Optical measurements of frequency- dependent linear viscoelastic moduli of complex fluids, Phys. Rev. Lett. 74, 1250–1253.CrossRefGoogle Scholar
  10. Ochoa, L.F.R., 2004, Structure, Dynamics and Photon Diffusion in Charge-stabilized Colloidal Suspensions, Ph.D Thesis, Université de Fribourg.Google Scholar
  11. Palmer, A., T.G. Mason, J. Xu, S.C. Kuo, and D. Wirtz, 1999, Diffusing wave spectroscopy microrheology of actin filament networks, Biophys. J. 76, 1063–1071.CrossRefGoogle Scholar
  12. Pierrat, R., P. Ambichl, S. Gigan, A. Haber, R. Carminati, and S. Rotter, 2014, Invariance property of wave scattering through disordered media, Proceedings of the National Academy of Sciences 111, 17765–17770.CrossRefGoogle Scholar
  13. Pine, D.J., D.A. Weitz, J.X. Zhu, and E. Herbolzheimer, 1990, Diffusing-wave spectroscopy: Dynamic light scattering in the multiple scattering limit, J. Phys. France 51, 2101–2127.CrossRefGoogle Scholar
  14. Pine, D.J., D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, 1988, Diffusing wave spectroscopy, Phys. Rev. Lett. 60, 1134–1137.CrossRefGoogle Scholar
  15. Scheffold, F., 2002, Particle sizing with diffusing wave spectroscopy, J. Dispersion Sci. Technol. 23, 591–599.CrossRefGoogle Scholar
  16. Scheffold, F., P. Díaz-Leyva, M. Reufer, N.B. Braham, I. Lynch, and J.L. Harden, 2010, Brushlike interactions between thermoresponsive microgel particles, Phys. Rev. Lett. 104, 128304.CrossRefGoogle Scholar
  17. Scheffold, F. and P. Schurtenberger, 2003, Light scattering probes of viscoelastic fluids and solids, Soft Mater. 1, 139–165.CrossRefGoogle Scholar
  18. Sessoms, D.A., H. Bissig, A. Duri, L. Cipelletti, and V. Trappe, 2010, Unexpected spatial distribution of bubble rearrangements in coarsening foams, Soft Matter 6, 3030–3037.CrossRefGoogle Scholar
  19. Waigh, T.A., 2016, Advances in the microrheology of complex fluids, Rep. Prog. Phys. 79, 074601.CrossRefGoogle Scholar
  20. Weitz, D.A. and D.J. Pine, 1993, Diffusing-wave spectroscopy, In: Brown, W., eds., Dynamic Light Scattering: The Method and Some Applications, Oxford University Press, New York, 652–720.Google Scholar
  21. Zhu, J.X., D.J. Durian, J. Müller, D.A. Weitz, and D.J. Pine, 1992, Scaling of transient hydrodynamic interactions in concentrated suspensions, Phys. Rev. Lett. 68, 2559–2562.CrossRefGoogle Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of FribourgFribourgSwitzerland
  2. 2.LS Instruments AGFribourgSwitzerland

Personalised recommendations