Korea-Australia Rheology Journal

, Volume 28, Issue 4, pp 381–388 | Cite as

Modeling of rheological behavior for polymer nanocomposites via Brownian dynamic simulation

  • Dong Gi Seong
  • Jae Ryoun Youn
  • Young Seok Song
Short Communication
  • 42 Downloads

Abstract

Reptation dynamics of the coarse-grained polymer molecular chain is investigated to predict rheological behavior of polymeric nanocomposites by applying Brownian dynamics simulation to the proposed full chain reptation model. Extensibility of polymer chain and constraint release from chain stretch or retraction are of main concern in describing the nanocomposite systems. Rheological results are well predicted by applying the improved simulation algorithm using stepwise Wiener processes. Strong shear thinning and elongational strain hardening are predicted and compared with the experimental results of polyamide 6/organoclay nanocomposites. The full chain reptation model enables us to predict dynamic motion of the polymer chain segments and understand mechanisms for characteristic rheological behaviors.

Keywords

nanocomposite reptation model Brownian dynamics simulation rheological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Gennes, P.G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55, 572–579.CrossRefGoogle Scholar
  2. des Cloizeaux, J., 1990, Relaxation of entangled polymers in melts, Macromolecules 23, 3992–4006.CrossRefGoogle Scholar
  3. Doi, M., 1983, Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model, J. Polym. Sci. Pt. B-Polym. Phys. 21, 667–684.CrossRefGoogle Scholar
  4. Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon, Oxford.Google Scholar
  5. Fang, J., M. Kröger, and H.C. Öttinger, 2000, A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293–1317.CrossRefGoogle Scholar
  6. Fornes, T.D., P.J. Yoon, H. Keskkula, and D.R. Paul, 2001, Nylon 6 nanocomposites: The effect of matrix molecular weight, Polymer 42, 9929–9940.CrossRefGoogle Scholar
  7. Hua, C.C. and J.D. Schieber, 1998, Segment connectivity, chainlength breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions, J. Chem. Phys. 109, 10018–10027.CrossRefGoogle Scholar
  8. Kloeden, P.E. and E. Platen, 1992, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
  9. Krishinamoori, R. and E.P. Giannelis, 1997, Rheology of endtethered polymer layered silicate nanocomposites, Macromolecules 30, 4097–4102.CrossRefGoogle Scholar
  10. Marrucci, G., 1985, Relaxation by reptation and tube enlargement: A model for polydisperse polymers, J. Polym. Sci. Pt. BPolym. Phys. 23, 159–177.CrossRefGoogle Scholar
  11. Marrucci, G., 1996, Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule, J. Non-Newton. Fluid Mech. 62, 279–289.CrossRefGoogle Scholar
  12. Okamoto, M., P.H. Nam, P. Maiti., T. Kotaka, N. Hasegawa, and A. Usuki, 2001, A house of card structure in polypropylene/clay nanocomposites under elongational flow, Nano Lett. 1, 295–298.CrossRefGoogle Scholar
  13. Öttinger, H.C., 1999, A thermodynamically admissible reptation model for fast flows of entangled polymers, J. Rheol. 43, 1461–1493.CrossRefGoogle Scholar
  14. Seong, D.G., T.J. Kang, and J.R. Youn, 2005, Rheological characterization of polymer-based nanocomposites with different nanoscale dispersions, e-Polymers 5, 1–14.CrossRefGoogle Scholar
  15. Tanoue, S., L.A. Utracki, A. Garcia-Rejon, P. Sammut, M. Ton-That, I. Pesneau, M.R. Kamal, and J. Lyngaae-Jørgensen, 2004, Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties, Polym. Eng. Sci. 44, 1061–1076.CrossRefGoogle Scholar
  16. Utracki, L.A. and J. Lyngaae-Jørgensen, 2002, Dynamic melt flow of nanocomposites based on poly-ε-caprolactam, Rheol. Acta 41, 394–407.CrossRefGoogle Scholar
  17. Vaia, R.A., S. Vasudevan, W. Krawiec, L.G. Scanlon, and E.P. Giannelis, 1995, New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates, Adv. Mater. 7, 154–156.CrossRefGoogle Scholar
  18. Wang, K.H., M. Xu, Y.S. Choi, and I.J. Chung, 2001, Effect of aspect ratio of clay on melt extensional process of maleated polypropylene/clay nanocomposites, Polym. Bull. 46, 499–505.CrossRefGoogle Scholar
  19. Zang, Q. and L.A. Archer, 2002, Poly(ethylene oxide)/silica nanocomposites: Structure and rheology, Langmuir 18, 10435–10442.CrossRefGoogle Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dong Gi Seong
    • 1
  • Jae Ryoun Youn
    • 2
  • Young Seok Song
    • 3
  1. 1.Composites Research DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Fiber System EngineeringDankook UniversityGyeonggi DoRepublic of Korea

Personalised recommendations