Skip to main content
Log in

Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below −15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen’s previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to −25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albouy, P.A., A. Vieyres, R. Pérez-Aparicio, O. Sanséau, and P. Sotta, 2014, The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber, Polymer 55, 4022–4031.

    Article  Google Scholar 

  • Andrews, E.H., 1962, Spherulite morphology in thin films of natural rubber, Proc. R. Soc. A-Math. Phys. Eng. Sci. 270, 232–241.

    Article  Google Scholar 

  • Andrews, E.H., 1964, Crystalline morphology in thin films of natural rubber. II. crystallization under strain, Proc. R. Soc. AMath. Phys. Eng. Sci. 277, 562–570.

    Article  Google Scholar 

  • Andrews, E.H., 1972, The influence of morphology on the mechanical properties of crystalline polymers, Pure Appl. Chem. 31, 91–112.

    Article  Google Scholar 

  • Arruda, E.M. and Boyce, M.C., 1993, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41, 389–412.

    Article  Google Scholar 

  • Avrami, M., 1939, Kinetics of phase change. I. General theory, J. Chem. Phys. 7, 1103–1112.

    Article  Google Scholar 

  • Avrami, M., 1940, Kinetics of phase change. II. Transformationtime relations for random distribution of nuclei, J. Chem. Phys. 8, 212–224.

    Article  Google Scholar 

  • Bekkedahl, N. and L.A. Wood, 1941, Influence of the temperature of crystallization on the melting of crystalline rubber, Rubber Chem. Technol. 14, 544–545.

    Article  Google Scholar 

  • Boutahar, K., C. Carrot, and J. Guillet, 1998, Crystallization of polyolefins from rheological measurements relation between the transformed fraction and the dynamic moduli, Macromolecules 31, 1921–1929.

    Article  Google Scholar 

  • Candau, N., R. Laghmach, L. Chazeau, J.-M., Chenal, C. Gauthier, T. Biben, and E. Munch, 2015, Temperature dependence of strain-induced crystallization in natural rubber: On the presence of different crystallite populations, Polymer 60, 115–124.

    Article  Google Scholar 

  • Che, J., C. Burger, S. Toki, L. Rong, B.S. Hsiao, S. Amnuaypornsri, and J. Sakdapipanich, 2013, Crystal and crystallites structure of natural rubber and peroxide-vulcanized natural rubber by a two-dimensional wide-angle x-ray diffraction simulation method. II. Strain-induced crystallization versus temperature induced crystallization, Macromolecules 46, 9712–9721.

    Article  Google Scholar 

  • Chenal, J.M., L. Chazeau, Y. Bomal, and C. Gauthier, 2007, New insights into the cold crystallization of filled natural rubber, J. Polym. Sci. Pt. B-Polym. Phys. 45, 955–962.

    Article  Google Scholar 

  • Choudhary, V., H.S. Varma, and I.K. Varma, 1991, Polyolefin blends: Effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. 1, Polymer 32, 2534–2540.

    Article  Google Scholar 

  • Cobbs, W.H. and R.L. Burton, 1953, Crystallization of polyethylene terephthalate, J. Polym. Sci. Pol. Chem. 10, 275–290.

    Google Scholar 

  • Dötsch, T., M. Pollard, and M. Wilhelm, 2003, Kinetics of isothermal crystallization in isotactic polypropylene monitored with rheology and Fourier-transform rheology, J. Phys. Condens. Mat. 15, S923–S931.

    Article  Google Scholar 

  • Doyle, M.J., 2000, On the effect of crystallinity on the elastic properties of semicrystalline polyethylene, Polym. Eng. Sci. 40, 330–335.

    Article  Google Scholar 

  • Edwards, B.C., 1975, The nature of multiple melting transitions in cis-polyisoprene, J. Polym. Sci. Pt. B-Polym. Phys. 13, 1387–1405.

    Article  Google Scholar 

  • Folt, V.L., R.W. Smith, and C.E. Wilkes, 1971, Crystallization of cis-polyisoprenes in a capillary rheometer. I, Rubber Chem. Technol. 44, 1–11.

    Article  Google Scholar 

  • Gent, A.N., 1954, Crystallization and the relaxation of stress in stretched natural rubber vulcanizates, Trans. Faraday Soc. 50, 521–533.

    Article  Google Scholar 

  • Gent, A., S. Kawahara, and J. Zhao, 1998, Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene, Rubber Chem. Technol. 71, 668–678.

    Article  Google Scholar 

  • Goritz, D. and R. Grassler, 1987, Melting temperatures as a function of the strain of oriented polymer networks, Rubber Chem. Technol. 60, 217–226.

    Article  Google Scholar 

  • Humbert, S., O. Lame, R. Séguéla, and G. Vigier, 2011, A reexamination of the elastic modulus dependence on crystallinity in semi-crystalline polymers, Polymer 52, 4899–4909.

    Article  Google Scholar 

  • Johnson, W.A. and R.F. Mehl, 1939, Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 396–415.

    Google Scholar 

  • Katz, J.R., 1925, Röntgenspektrographische untersuchungen am gedehnten kautschuk und ihre mögliche bedeutung für das problem der dehnungseigenschaften dieser substanz, Naturwissenschaften 13, 410–416.

    Article  Google Scholar 

  • Kelarakis, A., S.-M. Mai, C. Booth, and A.J. Ryan, 2005, Can rheometry measure crystallization kinetics? A comparative study using block copolymers, Polymer 46, 2739–2747.

    Article  Google Scholar 

  • Khanna, Y.P., 1993, Rheological mechanism and overview of nucleated crystallization kinetics, Macromolecules 26, 3639–3643.

    Article  Google Scholar 

  • Kim, B., D. Hong, and W.V. Chang, 2015, Kinetics and crystallization in pH-sensitive free-radical crosslinking polymerization of acrylic acid, J. Appl. Polym. Sci. 132, 42195–1–42195–10.

    Article  Google Scholar 

  • Lake, G.J., 1995, Fatigue and fracture of elastomers, Rubber Chem. Technol. 68, 435–460.

    Article  Google Scholar 

  • Le Cam, J.B., 2010, A review of volume changes in rubbers: The effect of stretching, Rubber Chem. Technol. 83, 247–269.

    Article  Google Scholar 

  • Luch, D. and G.S.Y. Yeh, 1972, Morphology of strain-induced crystallization of natural rubber. I. Electron microscopy on uncrosslinked thin film, J. Appl. Phys. 43, 4326–4338.

    Article  Google Scholar 

  • Luch, D. and G.S.Y. Yeh, 1973, Strain-induced crystallization of natural rubber. III. Reexamination of axial-stress changes during oriented crystallization of natural rubber vulcanizates, J. Polym. Sci. Pt. B-Polym. Phys. 11, 467–486.

    Article  Google Scholar 

  • Magill, J.H., 1995, Crystallization and morphology of rubber, Rubber Chem. Technol. 68, 507–539.

    Article  Google Scholar 

  • Min, M., A. Lu, R. Zhang, Y. Gao, Z. Lu, and J. Zhu, 2008, Investigation on the isothermal crystallization of poly(phenlene sulfide) by rheology and polarized light microscopy, Polym.-Plast. Technol. Eng. 47, 779–784.

    Article  Google Scholar 

  • Poompradub, S., M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki, I. Sics, and B.S. Hsiao, 2005, Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates, J. Appl. Phys. 97, 103529–1–103529-9.

    Article  Google Scholar 

  • Rault, J., J. Marchal, P. Judeinstein, and P.A. Albouy, 2006, Stressinduced crystallization and reinforcement in filled natural rubbers: 2H NMR study, Macromolecules 39, 8356–8368.

    Article  Google Scholar 

  • Shimomura, Y., J.L. White, and J.E. Spruiell, 1982, A comparative study of stress-induced crystallization of guayule, hevea, and synthetic polyisoprenes, J. Appl. Polym. Sci. 27, 3553–3567.

    Article  Google Scholar 

  • Sun, T., F. Chen, X. Dong, and C.C. Han, 2008, Rheological studies on the quasi-quiescent crystallization of polypropylene nanocomposites, Polymer 49, 2717–2727.

    Article  Google Scholar 

  • Tanaka, Y., 2001, Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study, Rubber Chem. Technol. 74, 355–375.

    Article  Google Scholar 

  • Toki, S., J. Che, L. Rong, B.S. Hsiao, S. Amnuaypornsri, A. Nimpaiboon, and J. Sakdapipanich, 2013, Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures, Macromolecules 46, 5238–5248.

    Article  Google Scholar 

  • Toki, S., T. Fujimaki, and M. Okuyama, 2000, Strain-induced crystallization of natural rubber as detected real-time by wideangle X-ray diffraction technique, Polymer 41, 5423–5429.

    Article  Google Scholar 

  • Tosaka, M., 2007, Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation, Polym. J. 39, 1207–1220.

    Article  Google Scholar 

  • Tosaka, M., S. Kohjiya, Y. Ikeda, S. Toki, and B.S. Hsiao, 2010, Molecular orientation and stress relaxation during straininduced crystallization of vulcanized natural rubber, Polym. J. 42, 474–481.

    Article  Google Scholar 

  • Treloar, L.R.G., 1941, Crystallisation phenomena in raw rubber, Trans. Faraday Soc. 37, 84–97.

    Article  Google Scholar 

  • Wang, Y., H. Zhang, Y. Wu, J. Yang, and L. Zhang, 2005, Structure and properties of strain-induced crystallization rubber-clay nanocomposites by co-coagulating the rubber latex and clay aqueous suspension, J. Appl. Polym. Sci. 96, 318–323.

    Article  Google Scholar 

  • Wood, L.A. and N. Bekkedahl, 1946, Crystallization of unvulcanized rubber at different temperatures, J. Appl. Phys. 17, 362–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daesun Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Hong, D., Kim, H. et al. Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests. Korea-Aust. Rheol. J. 28, 341–354 (2016). https://doi.org/10.1007/s13367-016-0034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0034-3

Keywords

Navigation