Skip to main content
Log in

Oscillatory shearing behavior of rocket leaves powder incorporated dough

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Dough blended with rocket leaves powder was subjected to small and large amplitude oscillatory shears. Small amplitude oscillatory shear data were fitted to a discrete relaxation model of elastic solids and to a critical gel model. The small amplitude relaxation spectrum was thereafter used to calculate the LAOS predictions of various large deformation models. The LAOS theoretical calculations using the Phan-Thien model showed good agreement with the first harmonic stress data, and only qualitative agreement with the third and the fifth harmonic stress values. Lissajous curves showed dissimilarity in shape between the experimental data and Phan-Thien model. The network model of Sim et al. (2003). Did not have the butterfly shape displayed in the Phan-Thien model, but it provided a worse fit to stress harmonics than the Phan-Thien model. An improved damage function was proposed, where time effect on network damage was taken into consideration, and fits to stress harmonics and to Lissajous stress-strain curves were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, J., 2014, Effect of particle size and temperature on rheology and creep behavior of barley beta-d-glucan concentrate dough, Carbohyd. Polym. 111, 89–100.

    Article  Google Scholar 

  • Ahmed, J., F. Al-Salman, and A.S. Almusallam, 2013a, Effect of blanching on thermal color degradation kinetics and rheological behavior of rocket (Eruca sativa) puree, J. Food Eng. 119, 660–667.

    Article  Google Scholar 

  • Ahmed, J., A.S. Almusallam, F. Al-Salman, M.H. AbdulRahman, and E. Al-Salem, 2013b, Rheological properties of water insoluble date fiber incorporated wheat flour dough, LWT-Food Sci. Technol. 51, 409–416.

    Article  Google Scholar 

  • Almusallam, A.S., 2014, Large amplitude oscillatory shear of immiscible polymer blends and comparison to anisotropy and droplet models, J. Rheol. 58, 1903–1916.

    Article  Google Scholar 

  • Amirkaveei, S., S. Dai, M. Newberry, F. Qi, M. Shahedi, and R.I. Tanner, 2009, A comparison of the rheology of four wheat flour doughs via a damage function model, Appl. Rheol. 19, 34305.

    Google Scholar 

  • Baumgaertel, M. and H.H. Winter, 1992, Interrelation between and continuous and discrete relaxation time spectra, J. Non-Newton. Fluid Mech. 44, 15–36.

    Article  Google Scholar 

  • Campbell, L., S.R. Euston, and M.A. Ahmed, 2016, Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake, Food Chem. 194, 1230–1237.

    Article  Google Scholar 

  • Corana, A., M. Marchesi, C. Martini, and S. Ridella, 1987, Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm, ACM Trans. Math. Softw. 13, 262–280.

    Article  Google Scholar 

  • Debbaut, B. and H. Burhin, 2002, Large amplitude oscillatory shear and Fourier-transform rheology for a high-density polyethylene: Experiments and numerical simulation, J. Rheol. 46, 1155–1176.

    Article  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Hicks, C.I., H. See, and C. Ekwebelam, 2011, The shear rheology of bread dough: Modeling, Rheol. Acta 50, 701–710.

    Article  Google Scholar 

  • Hyun, K., J.G. Nam, M. Wilhellm, K.H. Ahn, and S.J. Lee, 2006, Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions, Rheol. Acta 45, 239–249.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Jensen, E.A., 2002, Determination of discrete relaxation spectra using simulated annealing, J. Non-Newton. Fluid Mech. 107, 1–11.

    Article  Google Scholar 

  • Kwon, Y. and K.S. Cho, 2001, Time-strain nonseparability in viscoelastic constitutive equations, J. Rheol. 45, 1441–1452.

    Article  Google Scholar 

  • Lefebvre, J., 2006, An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear, Rheol. Acta 45, 525–538.

    Article  Google Scholar 

  • Madenci, A.B. and N. Bilgicli, 2014, Effect of whey protein concentrate and buttermilk powders on rheological properties of dough and bread quality, J. Food Qual. 37, 117–124.

    Article  Google Scholar 

  • Martínez, M., B. Oliete, and M. Gómez, 2013, Effect of the addition of extruded wheat flours on dough rheology and bread quality, J. Cereal Sci. 57, 424–429.

    Article  Google Scholar 

  • Mohammed, I., A.R. Ahmed, and B. Senge, 2012, Dough rheology and bread quality of wheat–chickpea flour blends, Ind. Crop. Prod. 36, 196–202.

    Article  Google Scholar 

  • Ng, T.S.K., 2007, Linear to Nonlinear Rheology of Bread Dough and its Constituents, Ph.D Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Ng, T.S.K. and G.H. McKinley, 2008, Power law gels at finite strains: The nonlinear rheology of gluten gels, J. Rheol. 52, 417–449.

    Article  Google Scholar 

  • Ng, T.S.K., G.H. McKinley, and R.H. Ewoldt, 2011, Large amplitude oscillatory shear flow of gluten dough: A model powerlaw gel, J. Rheol. 55, 627–654.

    Article  Google Scholar 

  • Ng, T.S.K., G.H. McKinley, and M. Padmanabhan, 2006, Linear to non-linear rheology of wheat flour dough, Appl. Rheol. 16, 265–274.

    Google Scholar 

  • Orbey, N. and J.M. Dealy, 1991, Determination of the relaxation spectrum from oscillatory shear data, J. Rheol. 35, 1035.

    Article  Google Scholar 

  • Ortolan, F., L.T.G. Brites, F.M. Montenegro, M. Schmiele, C.J. Steel, M.T.P.S. Clerici, E.L. Almeida, and Y.K. Chang, 2015, Effect of extruded wheat flour and pre-gelatinized cassava starch on process and quality parameters of French-type bread elaborated from frozen dough, Food Res. Int. 76, 402–409.

    Article  Google Scholar 

  • Phan-Thien, N., M. Newberry, and R.I. Tanner, 2000, Non-linear oscillatory flow of a soft solid-like viscoelastic material, J. Non-Newton. Fluid Mech. 92, 67–80.

    Article  Google Scholar 

  • Phan-Thien, N., M. Safari-Ardi, and A. Morales-Patino, 1997, Oscillatory and simple shear flows of a flour-water dough: A constitutive model, Rheol. Acta 36, 38–48.

    Article  Google Scholar 

  • Rolon-Garrido, V.H. and M.H. Wagner, 2009, The damping function in rheology, Rheol. Acta 48, 245–284.

    Article  Google Scholar 

  • Roths, T., D. Maier, C. Friedrich, M. Marth, and J. Honerkamp, 2000, Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method, Rheol. Acta 39, 163–173.

    Article  Google Scholar 

  • Salehiyan, R., Y. Yoo, W.J. Choi, and K. Hyun, 2014, Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology, Macromolecules 47, 4066–4076.

    Article  Google Scholar 

  • Sim, H.G., K.H. Ahn, and S.J. Lee, 2003, Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: A guideline for classification, J. Non-Newton. Fluid Mech. 112, 237–250.

    Article  Google Scholar 

  • Sofou, S., E.B. Muliawan, S.G. Hatzikiriakos, and E. Mitsoulis, 2008, Rheological characterization and constitutive modeling of bread dough, Rheol. Acta 47, 369–381.

    Article  Google Scholar 

  • Solomon, M.J., A.S. Almusallam, K.F. Seefeldt, A. Somwangthanaruj, and P. Varadan, 2001, Rheology of polypropylene/clay hybrid materials, Macromolecules 34, 1864–1872.

    Article  Google Scholar 

  • Soskey, P.R. and H.H. Winter, 1984, Large step shear strain experiments with parallel-disk rotational rheometers, J. Rheol. 28, 625–645.

    Article  Google Scholar 

  • Takeh, A. and S. Shanbhag, 2013, A computer program to extract the continuous and discrete relaxation spectra from dynamic viscoelastic measurements, Appl. Rheol. 23, 24628.

    Google Scholar 

  • Tanner, R.I., F. Qi, and S. Dai, 2008, Bread dough rheology and recoil I. Rheology, J. Non-Newton. Fluid Mech. 148, 33–40.

    Article  Google Scholar 

  • Tanner, R.I., F. Qi, and S. Dai, 2011, Bread dough rheology: An improved damage function model, Rheol. Acta 50, 75–86.

    Article  Google Scholar 

  • Trinh, L., T. Lowe, G.M. Campbell, P.J. Withers, and P.J. Martin, 2015, Effect of sugar on bread dough aeration during mixing, J. Food Eng. 150, 9–18.

    Article  Google Scholar 

  • Wang, C.F. and J.L. Kokini, 1995, Simulation of the nonlinear rheological properties of gluten dough using the Wagner constitutive model, J. Rheol. 39, 1465–1482.

    Article  Google Scholar 

  • Zhu, F., R. Sakulnak, and S. Wang, 2016, Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread, Food Chem. 194, 1217–1223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulwahab Salem Almusallam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almusallam, A.S., Ahmed, J., Nahar, S. et al. Oscillatory shearing behavior of rocket leaves powder incorporated dough. Korea-Aust. Rheol. J. 28, 149–158 (2016). https://doi.org/10.1007/s13367-016-0014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0014-7

Keywords

Navigation