Skip to main content
Log in

Flow of a Casson fluid through a locally-constricted porous channel: a numerical study

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Flow of a Casson fluid through a two-dimensional porous channel containing a local constriction is numerically investigated assuming that the resistance offered by the porous medium obeys the Darcy's law. Treating the constriction as another porous medium which obeys the Darcy-Forcheimer model, the equations governing fluid flow in the main channel and the constriction itself are numerically solved using the finite-volume method (FVM) based on the pseudo-transient SIMPLE algorithm. It is shown that an increase in the porosity of the channel decreases the shear stress exerted on the constriction. On the other hand, an increase in the fluid's yield stress is predicted to increase the maximum shear stress experienced by the constriction near its crest. The porosity of the constriction itself is predicted to have a negligible effect on the plaque's shear stress. But, the momentum of the weak flow passing through the constriction is argued to lower the bulk fluid from separating downstream of the constriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Roubaie, S., E.D. Jahnsen, M. Mohammed, C. Henderson-Toth, and E.A.V. Jones, 2011, Rheology of embryonic avian blood, Am. J. Physiol.-Heart Circul. Physiol. 301, H2473–H2481.

    Article  Google Scholar 

  • Alimohamadi, H. and K. Sadeghy, 2015, On the use of magnetic fields for controlling the temperature of hot spots of porous plaques in stenosis arteries, Nihon Reoroji Gakkaishi 43, 135–144.

    Article  Google Scholar 

  • Alimohamadi, H., 2014, Simulating Blood Flow in Stenoed Artery under the Influence of External Magnetic Field, MSc Thesis, University of Tehran.

    Google Scholar 

  • Anderson, H.I., R. Halden, and T. Glomsaker, 2000, Effects of surface irregularities on flow resistance in differently shaped arterial stenoses, J. Biomech. 33, 1257–1262.

    Article  Google Scholar 

  • Bear, J., 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.

    Google Scholar 

  • Bryan, J., 2014, The rise and fall of the clot buster, Pharm. J., 293, 20065679.

    Google Scholar 

  • Buchanan, J.R., C. Kleinstreuer, and J.K. Comer, 2000, Rheological effects on pulsatile hemodynamics in a stenosed tube, Comput. Fluids 29, 695–724.

    Article  Google Scholar 

  • Chakravarty, S., 1987, Effects of stenosis on the flow-behavior of blood in an artery, Int. J. Eng. Sci. 25, 1003–1016.

    Article  Google Scholar 

  • Charm, S. and G. Kurland, 1965, Viscometry of human blood for shear rates of 0-100,000 sec−1, Nature 206, 617–618.

    Article  Google Scholar 

  • Charm, S. and G. S. Kurland, 1962, Tube flow behavior and shear stress-shear rate characteristics of canine blood, Am. J. Physiol. 203, 417–421.

    Google Scholar 

  • Charm, S.E., W. McComis, and G. Kurland, 1964, Rheology and structure of blood suspensions, J. Appl. Physiol. 19, 127–133.

    Google Scholar 

  • Cho, Y.I. and K.R. Kensey, 1991, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flow, Biorheology 28, 241–262.

    Google Scholar 

  • Dash, R.K., K.N. Mehta, and G. Jayaraman, 1996, Casson fluid flow in a pipe filled with a homogeneous porous medium, Int. J. Eng. Sci. 34, 1145–1156.

    Article  Google Scholar 

  • Deshpande, M.D., D.P. Giddens, and R.F. Mabon, 1976, Steady laminar flow through modeled vascular stenoses, J. Biomech. 9, 165–174.

    Article  Google Scholar 

  • El-Shahed, M., 2003, Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl. Math. Comput. 138, 479–488.

    Google Scholar 

  • Giddens, D.P., C.K. Zarins, and S. Glagov, 1993, The role of fluid mechanics in the localization and detection of atherosclerosis, J. Biomech. Eng.-Trans. ASME 115, 588–594.

    Article  Google Scholar 

  • Hebbel, R.P., A. Leung, and N. Mohandas, 1990, Oxidationinduced changes in microrheologic properties of the red blood cell membrane, Blood 76, 1015–1020.

    Google Scholar 

  • Huang, H. and B.R. Seymour, 1995, A finite difference method for flow in a constricted channel, Comput. Fluids 24, 153–160.

    Article  Google Scholar 

  • Hunt, R., 1990, Numerical solution of the laminar flow in a constricted channel at moderately high Reynolds number using Newton iteration, Int. J. Numer. Methods Fluids 11, 247–259.

    Article  Google Scholar 

  • Karageorghis, A. and T.N. Phillips, 1991, Conforming Chebyshev spectral collocation methods for the solution of laminar flow in a constricted channel, IMA J. Numer. Anal. 11, 33–54.

    Article  Google Scholar 

  • Khakpour, M. and K. Vafai, 2008, Critical assessment of arterial transport models, Int. J. Heat Mass Transf. 51, 807–822.

    Article  Google Scholar 

  • Ku, D.N., 1970, Blood flow in arteries, Annu. Rev. Fluid Mech. 29, 399–434.

    Article  Google Scholar 

  • Layek, G.C. and C. Midya, 2007, Effect of constriction height on flow separation in a two-dimensional channel, Commun. Nonlinear Sci. Numer. Simul. 12, 745–759.

    Article  Google Scholar 

  • Lee, J.S. and Y.C. Fung, 1970, Flow in locally-constricted tubes at low Reynolds numbers, J. Appl. Mech.-Trans. ASME 37, 9–16.

    Article  Google Scholar 

  • Lee, T.S., 1994, Steady laminar fluid flow through a variable constrictions in vascular tube, J. Fluids Eng.-Trans. ASME 116, 66–71.

    Article  Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements and Applications, 1st Ed., VCH, New York.

    Google Scholar 

  • Mandal, P.K., 2005, An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis, Int. J. Non-Linear Mech. 40, 151–164.

    Article  Google Scholar 

  • Merril, E.W., 1969, Rheology of blood, Physiol. Rev. 49, 863–888.

    Google Scholar 

  • Mustapha, N., P.K. Mandal, P.R. Johnston, and N. Amin, 2010, A numerical simulation of unsteady blood flow through multiirregular arterial stenoses, Appl. Math. Model. 34, 1559–1573.

    Article  Google Scholar 

  • Neren, R.M., 1992, Vascular fluid mechanics, the arterial wall and atherosclerosis, J. Biomech. Eng.-Trans. ASME 114, 274–282.

    Article  Google Scholar 

  • Panagiotis, N. and D. Drikakis, 2003, Effects of blood models on flows through a stenosis, Int. J. Numer. Methods Fluids 43, 597–635.

    Article  Google Scholar 

  • Papanastasiou, T.C., 1987, Flows of materials with yield, J. Rheol. 31, 385–404.

    Article  Google Scholar 

  • Ramesh, K. and M. Devakar, 2015, Some analytical solutions for flows of Casson fluid with slip boundary conditions, Ain Shams Eng. J. 6, 967–975.

    Article  Google Scholar 

  • Simmonds, M.J., H.J. Meiselman, and O.K. Baskurt, 2013, Blood rheology and aging, J. Geriatr. Cardiol. 10, 291–301.

    Google Scholar 

  • Solzbach, U., H. Wollschläger, A. Zeiher, and H. Just, 1987, Effect of stenotic geometry on flow behavior across stenotic models, Med. Biol. Eng. Comput. 25, 543–550.

    Article  Google Scholar 

  • Stroud, J.S., S.A. Berger, and D. Saloner, 2000, Influence of stenosis morphology on flow through severely stenotic vessels: Implications for plaque rupture, J. Biomech. 33, 443–455.

    Article  Google Scholar 

  • Venkatesan, J., D.S. Sankar, K. Hemalatha, and Y. Yatim, 2013, Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries, J. Appl. Math. 2013, 583809.

    Article  Google Scholar 

  • Walburn, F.J. and D.J. Schneck, 1976, A constitutive equation for whole human blood, Biorheology 13, 201–210.

    Google Scholar 

  • Wei, H.H., S.L. Waters, S.Q. Liu, and J.B. Grotberg, 2003, Flow in a wavy-walled channel lined with a poroelastic layer, J. Fluid Mech. 492, 23–45.

    Article  Google Scholar 

  • Whale, M.D., A.J. Grodzinsky, and M. Johnson, 1996, The effect of aging and pressure on the specific hydraulic conductivity of the aortic wall, Biorheology 33, 17–44.

    Article  Google Scholar 

  • Young, D.F., 1979, Fluid mechanics of arterial stenoses, J. Biomech. Eng.-Trans. ASME 101, 157–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayvan Sadeghy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amlimohamadi, H., Akram, M. & Sadeghy, K. Flow of a Casson fluid through a locally-constricted porous channel: a numerical study. Korea-Aust. Rheol. J. 28, 129–137 (2016). https://doi.org/10.1007/s13367-016-0012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0012-9

Keywords

Navigation