Skip to main content
Log in

The effect of carbide particle additives on rheology of shear thickening fluids

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this paper, shear thickening fluids (STFs) including silicon carbide particles are presented. We fabricated a kind of STF based on nanosize fumed silica suspended in a liquid medium, polyethylene glycol, at a constant concentration of 20 wt.%. Then, different particle size silicon carbide (SiC) particles were added to the STF with various amounts. Their rheological properties under various temperatures were tested by using a rheometer. The suspension exhibits different systematic variations with respect to the varied parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, H.A., 1999, Shear-thickening (‘Dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids, J. Rheol. 33, 329–366.

    Article  Google Scholar 

  • Boersma, W.H., J. Laven, and H.N. Stein, 1992, Viscoelastic properties of concentrated shear-thickening dispersions, J. Colloid Interface Sci. 149, 10–22.

    Article  Google Scholar 

  • Bossis, G. and J.F. Brady, 1989, The rheology of Brownian suspensions, J. Chem. Phys. 91, 1866–1874.

    Article  Google Scholar 

  • Catherall, A.A., J.R. Melrose, and R.C. Ball, 2000, Shear thickening and order-disorder effects in concentrated colloids at high shear rates, J. Rheol. 44, 1–25.

    Article  Google Scholar 

  • Chu, B., A.T. Brady, B.D. Mannhalter, and D.R. Salem, 2014, Effect of silica particle surface chemistry on the shear thickening behavior of concentrated colloidal suspensions, J. Phys. Appl. Phys. 47, 335302.

    Article  Google Scholar 

  • Farr, R.S., J.R. Melrose, and R.C. Ball, 1997, Kinetic theory of jamming in hard-sphere startup flows, Phys. Rev. E 55, 7203–7211.

    Article  Google Scholar 

  • Fischer, C., S.A. Braun, P.-E. Bourban, V. Michaud, C.J.G. Plummer, and J.-A.E. Månson, 2006, Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Mater. Struct. 15, 1467–1475.

    Article  Google Scholar 

  • Galindo-Rosales, F.J., P. Moldenaers, and J. Vermant, 2011, Assessment of the dispersion quality in polymer nanocomposites by rheological methods, Macromol. Mater. Eng. 296, 331–340.

    Article  Google Scholar 

  • Galindo-Rosales, F.J., S. Martínez-Aranda, and L. Campo-Deaño, 2015, CorkSTF μfluidics - A novel concept for the development of eco-friendly light-weight energy absorbing composites, Mater. Des. 82, 326–334.

    Google Scholar 

  • Gates, L.E., Jr, 1968, Evaluation and development of fluid armor systems, Air Force Materials Laboratory, AFML-TR-68–362.

    Google Scholar 

  • Gurnon, A.K. and N.J. Wagner, 2015, Microstructure and rheology relationships for shear thickening colloidal dispersions, J. Fluid Mech. 769, 242–276.

    Article  Google Scholar 

  • Helber, R., F. Doncker, and R. Bung, 1990, Vibration attenuation by passive stiffness switching mounts, J. Sound Vib. 138, 47–57.

    Article  Google Scholar 

  • Hoffman, R.L., 1972, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability, J. Rheol. 16, 155–173.

    Article  Google Scholar 

  • Hunt, I., C. William, and C.H. Phelps, 1991, Method to reduce movement of a CPF device via a shear-thickening fluid, US Patent US4982792.

    Google Scholar 

  • Hussain, F., 2006, Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater. 40, 1511–1575.

    Article  Google Scholar 

  • Jolly, M.R. and J. W. Bender, 2006, Field responsive shear thickening fluid, US Patent US20060231357.

    Google Scholar 

  • Kalman, D.P., R.L. Merrill, N.J. Wagner, and E.D. Wetzel, 2009, Effect of particle hardness on the penetration behavior of fabrics ıntercalated with dry particles and concentrated particlefluid suspensions, ACS Appl. Mater. Interfaces 1, 2602–2612.

    Article  Google Scholar 

  • Kang, T.J., C.Y. Kim, and K.H. Hong, 2012, Rheological behavior of concentrated silica suspension and its application to soft armor, J. Appl. Polym. Sci. 124, 1534–1541.

    Article  Google Scholar 

  • Laha, A. and A. Majumdar, 2016, Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials, Mater. Des. 89, 286–293.

    Google Scholar 

  • Laun, H.M., 1991, Rheology of extremely shear thickening polymer dispersionsa) (passively viscosity switching fluids), J. Rheol. 35, 999–1034.

    Article  Google Scholar 

  • Lee, Y.S., E.D. Wetzel, and N.J. Wagner, 2003, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, J. Mater. Sci. 38, 2825–2833.

    Article  Google Scholar 

  • Lee, Y.S. and N.J. Wagner, 2003, Dynamic properties of shear thickening colloidal suspensions, Rheol. Acta 42, 199–208.

    Google Scholar 

  • Li, W., M. Nakano, T. Tian, A. Totsuka, and C. Sato, 2014, Viscoelastic properties of MR shear thickening fluids, J. Fluid Sci. Technol. 9, JFST0019.

    Article  Google Scholar 

  • Lin, N.Y.C., B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C.K. Poon, and I. Cohen, 2015, Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions, Phys. Rev. Lett. 115, 228304.

    Article  Google Scholar 

  • Liu, D.M., 2000, Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction, J. Mater. Sci. 35, 5503–5507.

    Article  Google Scholar 

  • Liu, X.-Q., R.-Y. Bao, X.-J. Wu, W. Yang, B.-H. Xie, and M.-B. Yang, 2015, Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid, RSC Adv. 5, 18367–18374.

    Article  Google Scholar 

  • Majumdar, A., B.S. Butola, and A. Srivastava, 2013, An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials, Mater. Des. 51, 148–153.

    Article  Google Scholar 

  • Majumdar, A., B.S. Butola, and A. Srivastava, 2014, Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid, Mater. Des. 54, 295–300.

    Article  Google Scholar 

  • Maranzano, B.J. and N.J. Wagner, 2002, Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition, J. Chem. Phys. 117, 10291.

    Article  Google Scholar 

  • Mari, R., R. Seto, J.F. Morris, and M.M. Denn, 2014, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol. 58, 1693–1724.

    Article  Google Scholar 

  • Nguyen, C.T., F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H.A. Mintsa, 2007, Temperature and particle-size dependent viscosity data for water-based nanofluids: Hysteresis phenomenon, Int. J. Heat Fluid Flow 28, 1492–1506.

    Article  Google Scholar 

  • Park, J.L., B.I. Yoon, J.G. Paik, and T.J. Kang, 2012a, Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; Part I - Effect of laminating sequence, Text. Res. J. 82, 527–541.

    Article  Google Scholar 

  • Park, J.L., B.I. Yoon, J.G. Paik, and T.J. Kang, 2012b, Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; Part II - Effect of fabric count and shot location, Text. Res. J. 82, 542–557.

    Article  Google Scholar 

  • Park, Y., Y. Kim, A.H. Baluch, and C.-G. Kim, 2014, Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric, Int. J. Impact Eng. 72, 67–74.

    Article  Google Scholar 

  • Peng, G.R., W. Li, T.F. Tian, J. Ding, and M. Nakano, 2014, Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids, Korea-Aust. Rheol. J. 26, 149–158.

    Article  Google Scholar 

  • Petel, O.E., S. Ouellet, J. Loiseau, B.J. Marr, D.L. Frost, and A.J. Higgins, 2013, The effect of particle strength on the ballistic resistance of shear thickening fluids, Appl. Phys. Lett. 102, 064103.

    Article  Google Scholar 

  • Petel, O.E., S. Ouellet, J. Loiseau, D.L. Frost, and A.J. Higgins, 2015, A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction, Int. J. Impact Eng. 85, 83–96.

    Article  Google Scholar 

  • Seshimo, K., 1986, Viscoelastic damper, US Patent US4759428.

    Google Scholar 

  • Seto, R., R. Mari, J.F. Morris, and M.M. Denn, 2013, Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett. 111, 218301.

    Article  Google Scholar 

  • Silbert, L.E., J.R. Melrose, and R.C. Ball, 1999, A structural analysis of concentrated, aggregated colloids under flow, Mol. Phys. 96, 1667–1675.

    Article  Google Scholar 

  • Srivastava, A., A. Majumdar, and B.S. Butola, 2011, Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid, Mater. Sci. Eng. A 529, 224–229.

    Article  Google Scholar 

  • Suh, Y.J., M. Ullmann, S.K. Friedlander, and K.Y. Park, 2001, Elastic behavior of nanoparticle chain aggregates (NCA): Effects of substrate on NCA stretching and first observations by a high-speed camera, J. Phys. Chem. B 105, 11796–11799.

    Article  Google Scholar 

  • Tan, V.B.C., T.E. Tay, and W.K. Teo, 2005, Strengthening fabric armour with silica colloidal suspensions, Int. J. Solids Struct. 42, 1561–1576.

    Article  Google Scholar 

  • Tian, T., G. Peng, W. Li, J. Ding, and M. Nakano, 2015, Experimental and modelling study of the effect of temperature on shear thickening fluids, Korea-Aust. Rheol. J. 27, 17–24.

    Article  Google Scholar 

  • Wagner, N.J. and J.F. Brady, 2009, Shear thickening in colloidal dispersions, Phys. Today 62, 27–32.

    Article  Google Scholar 

  • Warren, J., S. Offenberger, H. Toghiani, C.U. Pittman, T.E. Lacy, and S. Kundu, 2015, Effect of temperature on the shear-thickening behavior of fumed silica suspensions, ACS Appl. Mater. Interfaces 7, 18650–18661.

    Article  Google Scholar 

  • Williams, T.H., J. Day, and P. Simon, 2009, Surgical and medical garments and materials ıncorporating shear thickening fluids, US Patent US2007000440086.

    Google Scholar 

  • Zhang, X., W. Li, and X. Gong, 2010, Thixotropy of MR shearthickening fluids, Smart Mater. Struct. 19, 125012.

    Article  Google Scholar 

  • Zhang, X., W. Li, and X.L. Gong, 2008a, Study on magnetorheological shear thickening fluid, Smart Mater. Struct. 17, 015051.

    Article  Google Scholar 

  • Zhang, X.Z., W.H. Li, and X.L. Gong, 2008b, The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper, Smart Mater. Struct. 17, 035027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürgen, S., Kuşhan, M.C. & Li, W. The effect of carbide particle additives on rheology of shear thickening fluids. Korea-Aust. Rheol. J. 28, 121–128 (2016). https://doi.org/10.1007/s13367-016-0011-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0011-x

Keywords

Navigation