Korea-Australia Rheology Journal

, Volume 28, Issue 1, pp 1–22 | Cite as

A review of hemorheology: Measuring techniques and recent advances

  • Patrícia C. Sousa
  • Fernando T. Pinho
  • Manuel A. Alves
  • Mónica S. N. Oliveira


Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.


hemorheology blood viscosity blood viscoelasticity RBC deformability RBC aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, W.J., J.M. Cupps, and M.A. Haidekker, 2005, Interaction of fluorescent molecular rotors with blood plasma proteins, Biorheology 42, 335–344.Google Scholar
  2. Alexy, T., E. Pais, R.B. Wenby, W. Hogenauer, K. Toth, H.J. Meiselman, and K.R. Kensey, 2005a, Measurement of whole blood viscosity profiles via an automated viscometer: Technical details and clinical relevance, Clin. Lab. 51, 523–529.Google Scholar
  3. Alexy, T., R.B. Wenby, E. Pais, L.J. Goldstein, W. Hogenauer, and H.J. Meiselman, 2005b, An automated tube-type blood viscometer: Validation studies, Biorheology 42, 237–247.Google Scholar
  4. Apostolidis, A.J., M.J. Armstrong, and A.N. Beris, 2015, Modeling of human blood rheology in transient shear flows, J. Rheol. 59, 275–298.CrossRefGoogle Scholar
  5. Apostolidis, A.J. and A.N. Beris, 2014, Modeling of the blood rheology in steady-state shear flows, J. Rheol. 58, 607–633.CrossRefGoogle Scholar
  6. Artmann, G.M., C. Kelemen, D. Porst, G. Buldt, and S. Chien, 1998, Temperature transitions of protein properties in human red blood cells, Biophys. J. 75, 3179–3183.CrossRefGoogle Scholar
  7. Artmann, G.M., K.L.P. Sung, T. Horn, D. Whittemore, G. Norwich, and C. Shu, 1997, Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation, Biophys. J. 72, 1434–1441.CrossRefGoogle Scholar
  8. Barbee, J.H., 1973, The effect of temperature on the relative viscosity of human blood, Biorheology 10, 1–5.Google Scholar
  9. Barnes, H.A., 2000, Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, University of Wales Aberystwyth, U.K.Google Scholar
  10. Barnes, H. A., 2003, A review of the rheology of filled viscoelastic systems, In: D. M. Binding and K. Walters eds., Rheology Reviews, The British Society of Rheology, Aberystwyth, 1–36.Google Scholar
  11. Baskurt, O.K., M. Boynard, G.C. Cokelet, P. Connes, B.M. Cooke, S. Forconi, F. Liao, M.R. Hardeman, F. Jung, H.J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J.L. Wautier, 2009a, New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc. 42, 75–97.Google Scholar
  12. Baskurt, O.K., M.R. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, and H.J. Meiselman, 2009b, Comparison of three commercially available ektacytometers with different shearing geometries, Biorheology 46, 251–264.Google Scholar
  13. Benis, A.M. and J. Lacoste, 1968, Study of erythrocyte aggregation by blood viscometry at low shear rates using a balance method, Circ. Res. 22, 29–42.CrossRefGoogle Scholar
  14. Bingham, E.C. and H. Green, 1919, Paint a plastic material and not a viscous liquid; the measurement of its mobility and yield value, Proc Am. Soc. Test. Mater. 19, 640–664.Google Scholar
  15. Bishop, J.J., A.S. Popel, M. Intaglietta, and P.C. Johnson, 2001, Rheological effects of red blood cell aggregation in the venous network: A review of recent studies, Biorheology 38, 263–274.Google Scholar
  16. Breedveld, V. and D.J. Pine, 2003, Microrheology as a tool for high-throughput screening, J. Mater. Sci. 38, 4461–4470.CrossRefGoogle Scholar
  17. Bremmell, K.E., A. Evans, and C.A. Prestidge, 2006, Deformation and nano-rheology of red blood cells: An AFM investigation, Colloids Surf. B 50, 43–48.CrossRefGoogle Scholar
  18. Brust, M., C. Schaefer, R. Doerr, L. Pan, M. Garcia, P.E. Arratia, and C. Wagner, 2013, Rheology of human blood plasma: Viscoelastic versus Newtonian behavior, Phys. Rev. Lett. 110, 078305.CrossRefGoogle Scholar
  19. Campo-Deaño, L., R.P.A. Dullens, D.G.A.L. Aarts, F.T. Pinho, and M.S.N. Oliveira, 2013, Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system, Biomicrofluidics 7, 034102.CrossRefGoogle Scholar
  20. Campo-Deaño, L., M.S.N. Oliveira, and F.T. Pinho, 2015, A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow, Appl. Mech. Rev. 67, 030801.CrossRefGoogle Scholar
  21. Caro, C.G., T.J. Pedley, and W.A. Seed, 1974, Mechanics of the circulation, In: A. C. Guyton ed., Cardiovascular Physiology, Medical and Technical Publishers, London, 394–395.Google Scholar
  22. Charm, S.E. and G.S. Kurland, 1967, Static method for determining blood yield stress, Nature 216, 1121–1123.CrossRefGoogle Scholar
  23. Cheng, D.C.H. and F. Evans, 1965, Phenomenological characterization of rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids, Brit. J. Appl. Phys. 16, 1599–1617.CrossRefGoogle Scholar
  24. Chien, S., 1970, Shear dependence of effective cell volume as a determinant of blood viscosity, Science 168, 977–979.CrossRefGoogle Scholar
  25. Chien, S., S. Usami, H.M. Taylor, J.L. Lundberg, and M.I. Gregerse, 1966, Effects of hematocrit and plasma proteins on human blood rheology at low shear rates, J. Appl. Physiol. 21, 81–87.Google Scholar
  26. Cho, Y.I. and D.J. Cho, 2011, Hemorheology and microvascular disorders, Korean Circ. J. 41, 287–295.CrossRefGoogle Scholar
  27. Cokelet, G.R. and H.J. Meiselman, 2007, Macro- and micro-rheological properties of blood, In: O.K. Baskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 45–71.Google Scholar
  28. Dao, M., C.T. Lim, and S. Suresh, 2003, Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids 51, 2259–2280.CrossRefGoogle Scholar
  29. Dintenfass, L., 1979, Clinical applications of blood-viscosity factors and functions-especially in the cardiovascular disorders, Biorheology 16, 69–84.Google Scholar
  30. Dintenfass, L., 1985, Blood viscosity, Hyperviscosity & Hyperviscosaemia, MTP Press, Boston.Google Scholar
  31. Dobbe, J.G.G., M.R. Hardeman, G.J. Streekstra, and C.A. Grimbergen, 2004, Validation and application of an automated rheoscope for measuring red blood cell deformability distributions in different species, Biorheology 41, 65–77.Google Scholar
  32. Drasler, W.J., C.M. Smith, and K.H. Keller, 1989, Viscoelastic properties of the oxygenated sickle erythrocyte-membrane, Biorheology 26, 935–949.Google Scholar
  33. Eguchi, Y. and T. Karino, 2008, Measurement of rheologic property of blood by a falling-ball blood viscometer, Ann. Biomed. Eng. 36, 545–553.CrossRefGoogle Scholar
  34. Eugster, M., K. Hausler, and W.H. Reinhart, 2007, Viscosity measurements on very small capillary blood samples, Clin. Hemorheol. Microcirc. 36, 195–202.Google Scholar
  35. Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.CrossRefGoogle Scholar
  36. Fåhræus, R., 1929, The suspension stability of the blood, Physiol. Rev. 9, 241–274.Google Scholar
  37. Fåhræus, R. and T. Lindqvist, 1931, The viscosity of the blood in narrow capillary tubes, Am. J. Physiol. 96, 562–568.Google Scholar
  38. Faivre, M., M. Abkarian, K. Bickraj, and H.A. Stone, 2006, Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma, Biorheology 43, 147–159.Google Scholar
  39. Fischer, T.M., M. Stohr-Lissen, and H. Schmid-Schönbein, 1978, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science 202, 894–896.CrossRefGoogle Scholar
  40. Fontes, A., M.L.B. Castro, M.M. Brandão, H.P. Fernandes, A.A. Thomaz, R.R. Huruta, L.Y. Pozzo, L.C. Barbosa, F.F. Costa, S.T.O. Saad, and C.L. Cesar, 2011, Mechanical and electrical properties of red blood cells using optical tweezers, J. Opt. 13, 044012.CrossRefGoogle Scholar
  41. Haidekker, M.A., A.G. Tsai, T. Brady, H.Y. Stevens, J. A. Frangos, E. Theodorakis and M. Intaglietta, 2002, A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors, Am. J. Physiol.-Heart Circul. Physiol. 282, H1609–H1614.CrossRefGoogle Scholar
  42. Harkness, J., 1971, The viscosity of human blood plasma; its measurement in health and disease, Biorheology 8, 171–193.Google Scholar
  43. Hess, W.R., 1915, Does blood obey the general streaming-law of liquids?, Pflug. Arch. Ges. Phys. 162, 187–224.CrossRefGoogle Scholar
  44. Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.CrossRefGoogle Scholar
  45. International Committee for Standardisation in Haematology, 1984, Recommendation for a selected method for the measurement of plasma viscosity, J. Clin. Pathol. 37, 1147-1152.Google Scholar
  46. Jan, K.M., S. Chien, and J.T.J. Bigger, 1975, Observations on blood viscosity changes after acute myocardial infarction, Circulation 51, 1079–1084.CrossRefGoogle Scholar
  47. Johnn, H., C. Phipps, S. Gascoyne, C. Hawkey, and M.W. Rampling, 1992, A comparison of the viscometric properties of the blood from a wide-range of mammals, Clin. Hemorheol. 12, 639–647.Google Scholar
  48. Kang, Y.J. and S.J. Lee, 2013, Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel, Biomicrofluidics 7.Google Scholar
  49. Kang, Y.J. and S. Yang, 2013, Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids, Microfluid. Nanofluid. 14, 657–668.CrossRefGoogle Scholar
  50. Kim, S., Y.I. Cho, A.H. Jeon, B. Hogenauer, and K.R. Kensey, 2000, A new method for blood viscosity measurement, J. Non-Newton. Fluid Mech. 94, 47–56.CrossRefGoogle Scholar
  51. Koenig, W., M. Sund, B. Filipiak, A. Döring, H. Löwel, and E. Ernst, 1998, Plasma viscosity and the risk of coronary heart disease-Results from the MONICA-Augsburg cohort study, 1984 to 1992, Arterioscler. Thromb. Vasc. Biol. 18, 768–772.CrossRefGoogle Scholar
  52. Koutsouris, D., R. Guillet, J.C. Lelievre, M.T. Guillemin, P. Bertholom, Y. Beuzard, and M. Boynard, 1988, Determination of erythrocytes transit times through micropores. 1. Basic Operational Principles, Biorheology 25, 763–772.Google Scholar
  53. Langstroth, L., 1919, Blood viscosity. I. Conditions affecting the viscosity of blood after withdrawal from the body, J. Exp. Med. 30, 597–606.CrossRefGoogle Scholar
  54. Larson, R.G., 2005, The rheology of dilute solutions of flexible polymers: Progress and problems, J. Rheol. 49, 1–70.CrossRefGoogle Scholar
  55. Laurent, V.M., S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey, and F. Gallet, 2002, Assessment of mechanical properties of adherent living cells by bead micromanipulation: Comparison of magnetic twisting cytometry vs optical tweezers, J. Biomech. Eng.-Trans. ASME 124, 408–421.CrossRefGoogle Scholar
  56. Le Devehat, C., M. Vimeux, and T. Khodabandehlou, 2004, Blood rheology in patients with diabetes mellitus, Clin. Hemorheol. Microcirc. 30, 297–300.Google Scholar
  57. Lee, B.K., T. Alexy, R.B. Wenby, and H.J. Meiselman, 2007, Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress, Biorheology 44, 29–35.Google Scholar
  58. Lee, B.K., S. Xue, J. Nam, H. Lim, and S. Shin, 2011a, Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models, Korea-Aust. Rheol. J. 23, 1–6.CrossRefGoogle Scholar
  59. Lee, B.S., Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, and Y.K. Cho, 2011b, Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood, Lab Chip 11, 70–78.CrossRefGoogle Scholar
  60. Lee, S.S., Y. Yim, K.H. Ahn, and S.J. Lee, 2009, Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel, Biomed. Microdevices 11, 1021–1027.CrossRefGoogle Scholar
  61. Li, T., Y. Fan, Y. Cheng, and J. Yang, 2013, An electrochemical lab-on-a-CD system for parallel whole blood analysis, Lab. Chip. 13, 2634–2640.CrossRefGoogle Scholar
  62. Li, X.J., Z.L. Peng, H. Lei, M. Dao, and G.E. Karniadakis, 2014, Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model, Philos. Trans. R. Soc. A 372.Google Scholar
  63. Li, Y.J., C. Wen, H.M. Xie, A.P. Ye, and Y.J. Yin, 2009, Mechanical property analysis of stored red blood cell using optical tweezers, Colloid Surf. B 70, 169–173.CrossRefGoogle Scholar
  64. Lim, C.T., M. Dao, S. Suresh, C.H. Sow, and K.T. Chew, 2004, Large deformation of living cells using laser traps, Acta Mater. 52, 1837–1845.CrossRefGoogle Scholar
  65. Lim, H.J., Y.J. Lee, J.H. Nam, S. Chung, and S. Shin, 2010, Temperature- dependent threshold shear stress of red blood cell aggregation, J. Biomech. 43, 546–550.CrossRefGoogle Scholar
  66. Lo Presti, R., E. Hopps, and G. Caimi, 2014, Hemorheological abnormalities in human arterial hypertension, Korea-Aust. Rheol. J. 26, 199–204.CrossRefGoogle Scholar
  67. Marcinkowska-Gapinska, A., J. Gapinski, W. Elikowski, F. Jaroszyk, and L. Kubisz, 2007, Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients, Med. Biol. Eng. Comput. 45, 837–844.CrossRefGoogle Scholar
  68. Mark, M., K. Hausler, J. Dual, and W.H. Reinhart, 2006, Oscillating viscometer-Evaluation of a new bedside test, Biorheology 43, 133–146.Google Scholar
  69. Marton, Z., G. Kesmarky, J. Vekasi, A. Cser, R. Russai, B. Horvath, and K. Toth, 2001, Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods, Clin. Hemorheol. Microcirc. 24, 75–83.Google Scholar
  70. Merrill, E.W., 1969, Rheology of blood, Physiol. Rev. 49, 863–888.Google Scholar
  71. Merrill, E.W., H. Shin, G. Cokelet, E.R. Gilliland, R.E. Wells, and A. Britten, 1963, Rheology of human blood, near and at zero flow - Effects of temperature and hematocrit level, Biophys. J. 3, 199–213.Google Scholar
  72. Mills, J.P., M. Diez-Silva, D.J. Quinn, M. Dao, M.J. Lang, K.S.W. Tan, C.T. Lim, G. Milon, P.H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh, 2007, Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum, Proc. Natl. Acad. Sci. U.S.A. 104, 9213–9217.CrossRefGoogle Scholar
  73. Moreno, L., F. Calderas, G. Sanchez-Olivares, L. Medina-Torres, A. Sanchez-Solis, and O. Manero, 2015, Effect of cholesterol and triglycerides levels on the rheological behavior of human blood, Korea-Aust. Rheol. J. 27, 1–10.CrossRefGoogle Scholar
  74. Morris, C.L., C.M. Smith, and P.L. Blackshear, 1987, A new method for measuring the yield stress in thin-layers of sedimenting blood, Biophys. J. 52, 229–240.CrossRefGoogle Scholar
  75. Muramoto, Y. and Y. Nagasaka, 2011, High-speed sensing of microliter-order whole-blood viscosity using laser-induced capillary wave, J. Biorheology 25, 43–51.CrossRefGoogle Scholar
  76. Neuman, K.C. and A. Nagy, 2008, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods 5, 491–505.CrossRefGoogle Scholar
  77. Ong, P.K., D. Lim, and S. Kim, 2010, Are microfluidics-based blood viscometers ready for point-of-care applications? A review, Crit. Rev. Biomed. Eng. 38, 189–200.CrossRefGoogle Scholar
  78. Owens, R.G., 2006, A new micro structure-based constitutive model for human blood, J. Non-Newton. Fluid Mech. 140, 57–70.CrossRefGoogle Scholar
  79. Picart, C., P.H. Carpentier, H. Galliard, and J.M. Piau, 1999, Blood yield stress in systemic sclerosis, Am. J. Physiol.-Heart Circul. Physiol. 276, H771–H777.Google Scholar
  80. Picart, C., J.M. Piau, H. Galliard, and P. Carpentier, 1998, Human blood shear yield stress and its hematocrit dependence, J. Rheol. 42, 1–12.CrossRefGoogle Scholar
  81. Pirofsky, B., 1953, The determination of blood viscosity in man by a method based on Poiseuille's law, J. Clin. Invest. 32, 292–298.CrossRefGoogle Scholar
  82. Popel, A.S. and P.C. Johnson, 2005, Microcirculation and hemorheology, Annu. Rev. Fluid Mech. 37, 43–69.CrossRefGoogle Scholar
  83. Pozrikidis, C., 2003, Modeling and Simulation of Capsules and Biological Cells, CRC Press, Boca Raton.CrossRefGoogle Scholar
  84. Puig-De-Morales-Marinkovic, M., K.T. Turner, J.P. Butler, J.J. Fredberg, and S. Suresh, 2007, Viscoelasticity of the human red blood cell, Am. J. Physiol.: Cell Physiol. 293, C597–C605.CrossRefGoogle Scholar
  85. Radtke, H., R. Schneider, R. Witt, H. Kiesewetter, and H. Schmid-Schönbein, 1984, A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary, Adv. Exp. Med. Biol. 169, 851–857.CrossRefGoogle Scholar
  86. Rampling, M.W., 2007, Compositional properties of blood, In: O.K. Baskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 34–44.Google Scholar
  87. Replogle, R.L., H.J. Meiselman, and E.W. Merrill, 1967, Clinical implications of blood rheology studies, Circulation 36, 148–160.CrossRefGoogle Scholar
  88. Rosencranz, R. and S.A. Bogen, 2006, Clinical laboratory measurement of serum, plasma, and blood viscosity, Am. J. Clin. Pathol. 125, S78–86.Google Scholar
  89. Schmid-Schönbein, H., P. Gaehtgens, and H. Hirsch, 1968, On the shear rate dependence of red cell aggregation in vitro, J. Clin. Invest. 47, 1447–1454.CrossRefGoogle Scholar
  90. Secomb, T.W., 1987, Flow-dependent rheological properties of blood in capillaries, Microvasc. Res. 34, 46–58.CrossRefGoogle Scholar
  91. Sharma, K. and S.V. Bhat, 1992, Non-Newtonian rheology of leukemic blood and plasma: are n and k parameters of power law model diagnostic?, Physiol. Chem. Phys. Med. NMR 24, 307–312.Google Scholar
  92. Shin, S., J.X. Hou, J.S. Suh, and M. Singh, 2007, Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability, Clin. Hemorheol. Microcirc. 37, 319–328.Google Scholar
  93. Shin, S., S.W. Lee, and Y.L. Ku, 2004, Measurements of blood viscosity using a pressure-scanning slit viscometer, KSME Int. J. 18, 1036–1041.Google Scholar
  94. Shung, K.K., 2006, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, CRC Press, Boca Raton.Google Scholar
  95. Simchon, S., K. M. Jan, and S. Chien, 1987, Influence of Reduced Red-Cell Deformability on Regional Blood-Flow, Am. J. Physiol. 253, H898–H903.Google Scholar
  96. Smith, P.D., R.C.D. Young, and C.R. Chatwin, 2010, A MEMS viscometer for unadulterated human blood, Measurement 43, 144–151.CrossRefGoogle Scholar
  97. Sousa, P.C., J. Carneiro, F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2013, Steady and large-oscillatory shear rheology of whole blood, Biorheology 50, 269–282.Google Scholar
  98. Sousa, P.C., F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2010, Efficient microfluidic rectifiers for viscoelastic fluid flow, J. Non-Newton. Fluid Mech. 165, 652–671.CrossRefGoogle Scholar
  99. Sousa, P.C., F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2011, Extensional flow of blood analog solutions in microfluidic devices, Biomicrofluidics 5, 014108–014119.CrossRefGoogle Scholar
  100. Squires, T.M. and T.G. Mason, 2010, Fluid mechanics of microrheology, Annu. Rev. Fluid Mech. 42, 413–438.CrossRefGoogle Scholar
  101. Srivastava, N., R.D. Davenport, and M.A. Burns, 2005, Nanoliter viscometer for analyzing blood plasma and other liquid samples, Anal. Chem. 77, 383–392.CrossRefGoogle Scholar
  102. Steffen, P., C. Verdier, and C. Wagner, 2013, Quantification of depletion-induced adhesion of red blood cells, Phys. Rev. Lett. 110, 018102–018105.CrossRefGoogle Scholar
  103. Sutera, S.P. and R. Skalak, 1993, The history of Poiseuille law, Annu. Rev. Fluid Mech. 25, 1–19.CrossRefGoogle Scholar
  104. Taguchi, Y., R. Nagamachi, and Y. Nagasaka, 2009, Micro optical viscosity sensor for in situ measurement based on a laserinduced capillary wave, J. Therm. Sci. Technol. 4, 98–108.CrossRefGoogle Scholar
  105. Thiriet, M., 2008, Biology and Mechanics of Blood Flows, Springer, New York.CrossRefGoogle Scholar
  106. Thurston, G.B., 1972, Viscoelasticity of human blood, Biophys. J. 12, 1205–1217.CrossRefGoogle Scholar
  107. Thurston, G.B., 1979, Rheological parameters for the viscosity viscoelasticity and thixotropy of blood, Biorheology 16, 149–162.Google Scholar
  108. Thurston, G.B., 1996, Viscoelastic properties of blood and blood analogs, In: T.V. How ed., Advances in Hemodynamics and Hemorheology, Vol. 1, JAI Press LTD., London, 1–30.CrossRefGoogle Scholar
  109. Thurston, G.B. and N.M. Henderson, 2006, Effects of flow geometry on blood viscoelasticity, Biorheology 43, 729–746.Google Scholar
  110. Thurston, G.B. and N.M. Henderson, 2007, Viscoelasticity of human blood, In: O.K. Barskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 72–90.Google Scholar
  111. Travagli, V., I. Zanardi, L. Boschi, A. Gabbrielli, V.A.M. Mastronuzzi, R. Cappelli, and S. Forconi, 2008, Comparison of blood viscosity using a torsional oscillation viscometer and a rheometer, Clin. Hemorheol. Microcirc. 38, 65–74.Google Scholar
  112. Valant, A. Z., L. Ziberna, Y. Papaharilaou, A. Anayiotos and G. C. Georgiou, 2011, The influence of temperature on rheological properties of blood mixtures with different volume expanders-implications in numerical arterial hemodynamics simulations, Rheol. Acta 50, 389–402.CrossRefGoogle Scholar
  113. Vlastos, G., D. Lerche, B. Koch, O. Samba, and M. Pohl, 1997, The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions, Rheol. Acta 36, 160–172.CrossRefGoogle Scholar
  114. Waite, L., 2006, Biofluid Mechanics in Cardiovascular Systems, McGraw-Hill, New York.Google Scholar
  115. Yaginuma, T., M.S. Oliveira, R. Lima, T. Ishikawa, and T. Yamaguchi, 2013, Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel, Biomicrofluidics 7, 054110.CrossRefGoogle Scholar
  116. Yao, A., M. Tassieri, M. Padgett, and J. Cooper, 2009, Microrheology with optical tweezers, Lab Chip 9, 2568–2575.CrossRefGoogle Scholar
  117. Yilmaz, F. and M.Y. Gundogdu, 2008, A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust. Rheol. J. 20, 197–211.Google Scholar
  118. Zeng, H. and Y. Zhao, 2009, On-chip blood viscometer towards point-of-care hematological diagnosis, 22nd IEEE International Conference, Sorento.Google Scholar
  119. Zhu, H.Y., I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima and A. Ozcan, 2013, Cost-effective and rapid blood analysis on a cell-phone, Lab Chip 13, 1282–1288.CrossRefGoogle Scholar
  120. Zydney, A.L., J.D. Oliver, and C.K. Colton, 1991, A constitutive equation for the viscosity of stored red-cell suspensions-Effect of hematocrit, shear rate, and suspending phase, J. Rheol. 35, 1639–1680.Google Scholar

Copyright information

© Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patrícia C. Sousa
    • 1
  • Fernando T. Pinho
    • 2
  • Manuel A. Alves
    • 1
  • Mónica S. N. Oliveira
    • 3
  1. 1.Departamento de Engenharia Química, CEFTFaculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto FriasPortoPortugal
  2. 2.CEFT, Departamento de Engenharia MecânicaFaculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto FriasPortoPortugal
  3. 3.James Weir Fluids Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUnited Kingdom

Personalised recommendations