Skip to main content
Log in

On the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this paper, the effect of normal stress differences on the viscoelastic Taylor-Couette instability is studied numerically. The governing equations are discretized using FTCS finite difference method on a staggered mesh based on the artificial compressibility algorithm. Using the CEF model as the constitutive equation and the Carreau-Yasuda model as the viscometric functions, the flow between rotating cylinders has been studied for a range of radius ratios, Taylor numbers and rheological properties. It is shown that increasing the first normal stress difference destabilizes the flow field while increasing the negative second normal stress difference stabilizes the flow field. The main contribution of the current study is an answer to this question: How do the first and second normal stress differences affect the stability of viscoelastic flow between rotating cylinders? For this reason, we used the order of magnitude technique to obtain a force balance relation in the core region of flow. Based on this relation and numerical simulation, the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences are studied in detail. Furthermore, a two dimensional analytical solution for the main flow velocity component between finite rotating cylinders is carried out considering the end effect of stationary walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alziary de Roquefort T. and G. Grillaud, 1978, Computation of Taylor vortex flow by a transient implicit method, Comput. Fluids 6, 259–269.

    Article  Google Scholar 

  • Apostolakis, M.V., V.G. Mavrantzas, and A.N. Beris, 2002, Stress gradient-induced migration effects in the Taylor-Couette flow of a dilute polymer solution, J. Non-Newt. Fluid 102, 409–445.

    Article  Google Scholar 

  • Avgousti, M. and A.N. Beris, 1993, Non-axisymmetric modes in viscoelastic Taylor-Couette flow, J. Non-Newt. Fluid 50, 225–251.

    Article  Google Scholar 

  • Baumert, B.M., D. Liepmann, and S.J. Muller, 1997, Digital particle image velocimetry in flows with nearly closed path lines: the viscoelastic Taylor-Couette instability, J. Non-Newt. Fluid 69, 221–237.

    Article  Google Scholar 

  • Baumert, B.M. and S.J. Muller, 1995, Flow visualization of the elastic Taylor-Couette instability in Boger fluids, Rheol. Acta 34, 147–159.

    Article  Google Scholar 

  • Baumert, B.M. and S.J. Muller, 1997, Flow regimes in model viscoelastic fluids in a circular couette system with independently rotating cylinders, Phys. Fluids 9, 566–586.

    Article  Google Scholar 

  • Baumert, B.M. and S.J. Muller, 1999, Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor-Couette flow, J. Non-Newt. Fluid 83, 33–69.

    Article  Google Scholar 

  • Beard, D., M. Davies, and K. Walters, 1966, The stability of elastico-viscous flow between rotating cylinders Part 3. Overstability in viscous and Maxwell fluids, J. Fluid. Mech. 24, 321–334.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong and O. Hassager, 1987, Dynamics of Polymeric Liquids, fluid dynamics, Vol. 1, second ed., Wiley, New York

    Google Scholar 

  • Bird, R.B. and J.M. Wiest, 1995, Constitutive equations for polymeric liquids, Annu. Rev. Fluid Mech. 27, 169–193.

    Article  Google Scholar 

  • Bronshtein, I. and K. Semendyaev, 1980, Handbook of mathematics, Moscow: Nauka, 40–80.

    Google Scholar 

  • Caton, F., 2006, Linear stability of circular Couette flow of inelastic viscoplastic fluids, J. Non-Newt. Fluid 134, 148–154.

    Article  Google Scholar 

  • Chorin, A.J., 1967, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2, 12–26.

    Article  Google Scholar 

  • Chossat, P. and G. Iooss, 1994, The Couette-Taylor problem, Springer.

    Book  Google Scholar 

  • Coronado-Matutti, O., P.S. Mendes, and M. Carvalho, 2004, Instability of inelastic shear-thinning liquid in a Couette flow between concentric cylinder, J. Fluid. Eng-T ASME 126, 385–390.

    Article  Google Scholar 

  • Couette, M.F.A., 1890, Etudes sur le frottement des liquides, PhD diss.

    Google Scholar 

  • Cruz, D. and F. Pinho, 2004, Skewed Poiseuille-Couette flows of SPTT fluids in concentric annuli and channels, J. Non-Newt. Fluid 121, 1–14.

    Article  Google Scholar 

  • Dumont, E., F. Fayolle, V. Sobolík, and J. Legrand, 2002, Wall shear rate in Taylor-Couette-Poiseuille flow at low axial Reynolds number, Int. J. Heat. Mass. Tran. 45, 679–689.

    Article  Google Scholar 

  • Ginn, R. and M. Denn., 1969, Rotational stability in viscoelastic liquids: Theory, AIChE J. 15, 450–454.

    Article  Google Scholar 

  • Hoffmann, K.A., 1989, Computational fluid dynamics for engineers, EES, Texas

    Google Scholar 

  • Huang, X., N. Phan-Thien, and R. Tanner, 1996, Viscoelastic flow between eccentric rotating cylinders: unstructured control volume method, J. Non-Newt. Fluid 64, 71–92.

    Article  Google Scholar 

  • Jeng, J. and K.Q. Zhu, 2010, Numerical simulation of Taylor Couette flow of Bingham fluids, J. Non-Newt Fluid 165, 1161–1170.

    Article  Google Scholar 

  • Kupferman, R., 1998, Simulation of viscoelastic fluids: Couette-Taylor flow, J. Comput. Phys. 147, 22–59.

    Article  Google Scholar 

  • Larson, R., 1989, Taylor-Couette stability analysis for a Doi-Edwards fluid, Rheol. Acta 28, 504–510.

    Article  Google Scholar 

  • Larson, R., 1992, Instabilities in viscoelastic flows, Rheol. Acta 31, 213–263.

    Article  Google Scholar 

  • Larson, R., S. Muller, and E. Shaqfeh, 1990, A purely elastic instability in Taylor-Couette flow, J. Fluid. Mech. 218, 573–800.

    Article  Google Scholar 

  • Larson, R., S. Muller, and E. Shaqfeh, 1994, The effect of fluid rheology on the elastic Taylor-Couette instability, J. Non-Newt. Fluid 51, 195–225.

    Article  Google Scholar 

  • Lockett, T., S. Richardson, and W. Worraker, 1992, The stability of inelastic non-Newtonian fluids in Couette flow between concentric cylinders: a finite-element study, J. Non-Newt. Fluid 43, 165–177.

    Article  Google Scholar 

  • Muller, S., E. Shaqfeh, and W. Worraker, 1993, Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow, J. Non-Newt Fluid 46, 315–330.

    Article  Google Scholar 

  • Northey, P.J., R.C. Armstrong, and R.A. Brown, 1992, Finite-amplitude time-periodic states in viscoelastic Taylor-Couette flow described by the UCM model, J. Non-Newt. Fluid 42, 117–139.

    Article  Google Scholar 

  • Norouzi, M., M.H. Kayhanm, M.R.H. Nobari, and M.K. Demneh, 2009, Convective heat transfer of viscoelastic flow in a curved duct, World Acad. Sci. Eng. Technol. 56, 327–333.

    Google Scholar 

  • Norouzi, M., M.H. Kayhani, C. Shu, and M.R.H. Nobari, 2010 Flow of second-order fluid in a curved duct with square crosssection, J. Non-Newt. Fluid 165, 323–329.

    Article  Google Scholar 

  • Norouzi, M., M.R.H. Nobari, M.H. Kayhani, and F. Talebi, 2012 Instability investigation of creeping viscoelastic flow in a curved duct with rectangular cross-section, Int. J. Non-Linear Mech. 47, 14–25.

    Article  Google Scholar 

  • Poncet, S., S. Haddadi, and S. Viazzo, 2011, Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system, Int. J. Heat. Fluid. Fl. 32, 128–144.

    Article  Google Scholar 

  • Qi, H. and H. Jin, 2006, Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders, Acta. Mech. Sinica 22, 301–305.

    Article  Google Scholar 

  • Ravanchi, M.T., M. Mirzazadeh, and F. Rashidi, 2007, Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation, Int. J. Heat. Fluid. Fl. 28, 838–845.

    Article  Google Scholar 

  • Renardy, M., Y. Renardy, R. Sureshkumar, and A. Beris, 1996, Hopf-Hopf and steady-Hopf mode interactions in Taylor-Couette flow of an upper convected Maxwell liquid, J. Non-Newt. Fluid 63, 1–31.

    Article  Google Scholar 

  • Rossi, L.F., G. McKinley, and L.P. Cook, 2006, Slippage and migration in Taylor-Couette flow of a model for dilute wormlike micellar solutions, J. Non-Newt. Fluid 136, 79–92.

    Article  Google Scholar 

  • Tagg, R., 1994, The Couette-Taylor problem, Nonlinear Sci. Today 4, 1–25.

    Article  Google Scholar 

  • Tanner, R.I., 2000, Engineering rheology, Oxford University Press, Melbourne

    Google Scholar 

  • Taylor, G.I., 1923, Stability of a viscous liquid contained between two rotating cylinders, Philos. T. Roy. Soc. A. 289–343.

    Google Scholar 

  • Thomas, D., U. Al-Mubaiyedh, R. Sureshkumar, and B. Khomami, 2006, Time-dependent simulations of non-axisymmetric patterns in Taylor-Couette flow of dilute polymer solutions, J. Non-Newt. Fluid 138, 111–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, M., Sedaghat, M.H., Shahmardan, M.M. et al. On the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences. Korea-Aust. Rheol. J. 27, 41–53 (2015). https://doi.org/10.1007/s13367-015-0006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-015-0006-z

Keywords

Navigation