Role of platelet CD40 ligand for endothelial cell-monocyte interaction in the presence of flow

Abstract

CD40 ligand (CD154)-induced ultra-large von Willebrand factor (vWF) multimer-mediated endothelial cell-platelet-monocyte interaction may play an important role in adaptive and maladaptive vascular remodeling processes. Here we analyzed the impact of and conditions favouring the deposition of these multimers on the endothelial cell (EC) surface by way of CD40-CD154 co-stimulation in settings mimicking different forms of blood flow. Upon exposure to low oscillatory shear stress and sCD154, a release of vWF multimers comparable to histamine stimulation was monitored on the EC surface in a string-like fashion. Moreover, ex vivo perfused carotid arteries of wild type mice at low laminar shear stress rates showed a luminal release of vWF as ultra-large vWF multimers (ULVWF) upon stimulation with sCD154 which was absent in blood vessels of CD40 knockout mice. The observed CD40- and flow-dependent vWF release from intact endothelial cells and subsequent vWF multimer formation may facilitate adhesion and subsequent activation of circulating platelets at atherosclerotic predilection sites, which are characterized by disturbed flow patterns. This in turn may amplify endothelial cell-monocyte interaction, thus possibly initiating or promoting early atherosclerotic lesion formation.

This is a preview of subscription content, access via your institution.

References

  1. Andrews, R.K. and M.C. Berndt, 2008, Platelet adhesion: a game of catch and release, J. Clin. Invest. 118, 3009–3011.

    Google Scholar 

  2. Cheng, C., D. Tempel et al., 2006, Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress, Circulation 113, 2744–2753.

    Article  Google Scholar 

  3. Ding, S.F., M. Ni et al., 2010, A causal relationship between shear stress and atherosclerotic lesions in apolipoprotein E knockout mice assessed by ultrasound biomicroscopy, Am. J. Physiol. Heart Circ. Physiol. 298, H2121–2129.

    Article  Google Scholar 

  4. Franks, Z.G., R.A. Campbell et al., 2010, Platelet-leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke, Ann. N. Y. Acad. Sci. 1207, 11–17.

    Article  Google Scholar 

  5. Hamilton, K.K. and P.J. Sims, 1987, Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. Study of microcarrier cell monolayers using the fluorescent probe indo-1, J. Clin. Invest. 79, 600–608.

    Article  Google Scholar 

  6. Hansson, G.K. and P. Libby, 2006, The immune response in atherosclerosis: a double-edged sword, Nat. Rev. Immunol. 6, 508–519.

    Article  Google Scholar 

  7. Hansson, G.K., P. Libby et al., 2002, Innate and adaptive immunity in the pathogenesis of atherosclerosis, Circ. Res. 91, 281–291.

    Article  Google Scholar 

  8. Henn, V., S. Steinbach et al., 2001, The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40, Blood 98, 1047–1054.

    Article  Google Scholar 

  9. Jin, S.Y., J. Tohyama et al., 2012, Genetic ablation of Adamts13 gene dramatically accelerates the formation of early atherosclerosis in a murine model, Arterioscler. Thromb. Vasc. Biol. 32, 1817–1823.

    Article  Google Scholar 

  10. Levy, G.G., W.C. Nichols et al., 2001, Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura, Nature 413, 488–494.

    Article  Google Scholar 

  11. Lievens, D. and P. von Hundelshausen, 2011, Platelets in atherosclerosis, Thromb. Haemost. 106, 827–838.

    Article  Google Scholar 

  12. Malek, A.M., S.L. Alper et al., 1999, Hemodynamic shear stress and its role in atherosclerosis, JAMA 282, 2035–2042.

    Article  Google Scholar 

  13. Manduteanu, I. and M. Simionescu, 2012, Inflammation in atherosclerosis: a cause or a result of vascular disorders? J. Cell. Mol. Med. 16, 1978–1990.

    Article  Google Scholar 

  14. Mayadas, T.N., R.C. Johnson et al., 1993, Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice, Cell 74, 541–554.

    Article  Google Scholar 

  15. Moake, J.L., C.K. Rudy et al., 1982, Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura, N. Engl. J. Med. 307, 1432–1435.

    Article  Google Scholar 

  16. Morigi, M., C. Zoja et al., 1995, Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells, Blood 85, 1696–1703.

    Google Scholar 

  17. Schneider, S.W., S. Nuschele et al., 2007, Shear-induced unfolding triggers adhesion of von Willebrand factor fibers, Proc. Natl. Acad. Sci. USA 104, 7899–7903.

    Article  Google Scholar 

  18. Simionescu, M., 2007, Implications of early structural-functional changes in the endothelium for vascular disease, Arterioscler. Thromb. Vasc. Biol. 27, 266–274.

    Article  Google Scholar 

  19. Szanto, T., L. Joutsi-Korhonen et al., 2012, New insights into von Willebrand disease and platelet function, Semin. Thromb. Hemost. 38, 55–63.

    Article  Google Scholar 

  20. Valentijn, K.M., J.E. Sadler et al., 2011, Functional architecture of Weibel-Palade bodies, Blood 117, 5033–5043.

    Article  Google Scholar 

  21. van Gils, J.M., J.J. Zwaginga et al., 2009, Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases, J. Leukoc. Biol. 85, 195–204.

    Article  Google Scholar 

  22. Wagner, A.H., B. Guldenzoph et al., 2004, CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell-monocyte interaction, Arterioscler. Thromb. Vasc. Biol. 24, 715–720.

    Article  Google Scholar 

  23. Wagner, D.D. and P.S. Frenette, 2008, The vessel wall and its interactions, Blood 111, 5271–5281.

    Article  Google Scholar 

  24. Weber, C. and Noels, H., 2011, Atherosclerosis: current pathogenesis and therapeutic options, Nat. Med. 17, 1410–1422.

    Article  Google Scholar 

  25. Zhang, X., K. Halvorsen et al., 2009, Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor, Science 324, 1330–1334.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Hecker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, A.H., Schwarz, M., König, G. et al. Role of platelet CD40 ligand for endothelial cell-monocyte interaction in the presence of flow. Korea-Aust. Rheol. J. 26, 405–408 (2014). https://doi.org/10.1007/s13367-014-0046-9

Download citation

Keywords

  • von Willebrand factor
  • endothelial cells
  • cell-cell interaction
  • CD40
  • vascular remodeling