Skip to main content
Log in

Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The present investigation deals with the effect of the shape of a stenosis on the flow characteristics of blood, having shear-thinning viscoelastic rheological properties by using a suitable mathematical model. Keeping the relevance of the physiological situation, the mathematical model is developed by treating blood as a non-Newtonian shear-thinning viscoelastic fluid characterised by unsteady Oldroyd-3-constant model through an axisymmetric irregular arterial stenosis obtained from casting of a mildly stenosed artery (cf. Back et al., 1984). Comparison with the well-known cosine-shaped stenosis, in order to estimate the effect of surface roughness on the flow characteristics of blood, has however not been ruled out from the present study. Numerical illustrations are presented for a physiological flow, as well as for an equivalent simple pulsatile flow with equal stroke volume to that of the physiological flow, and the differences in their flow behaviour are recorded and discussed. The Marker and Cell method is developed in cylindrical co-ordinate system in order to tackle the highly nonlinear governing equations of motion. The effects of the quantities of significance such as Reynolds number, Deborah number, blood viscoelasticity and flow pulsatility, as well on the velocity components, pressure drop, wall shear stress and patterns of streamlines are quantitatively investigated graphically. Comparison of the results reveals that although the behaviour of two different pulses are similar at the same instant of time, there exist some important deviations in the flow pattern, pressure drop and wall shear stress as well. The present results also predict that the excess pressure drop across the cosine stenosis compared with the irregular one is consistent with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsden, A.A. and F.H. Harlow, 1970, The SMAC Method: A numerical technique for calculating incompressible fluid flows, Los Alamos Scientific Lab. Report LA-4370.

    Google Scholar 

  • Anand, M., K. Rajagopal, and K.R. Rajagopal, 2006, A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot, Theor. Comput. Fluid Dyn. 20, 239–250.

    Article  Google Scholar 

  • Anand, M. and K.R. Rajagopal, 2004, A shear-thinning viscoelastic fluid model for describing the flow of blood, Int. J. Cardiovas. Med. Sci. 4, 59–68.

    Google Scholar 

  • Andersson, H.I., R. Halden, and T. Glomsaker, 2000, Effect of surface irregularities on flow resistance in differently shaped arterial stenoses, J. Biomech. 33, 1257–1262.

    Article  CAS  Google Scholar 

  • Arada, N. and A. Sequeira, 2005, Steady flows of shear-dependent Oldroyd-B fluids around an obstacle, J. Math. Fluid Mech. 7, 451–483.

    Article  Google Scholar 

  • Back, L.H., Y.I. Cho, D.W. Crawford, and R.F. Cuffel, 1984, Effect of mild Atheros-clerosis on flow resistance in a coronary artery casting of man, ASME J. Biomech. Engng. 106, 48–53.

    Article  CAS  Google Scholar 

  • Bodnar, T., A. Sequeira, and M. Prosi, 2010, On the shear-thinning and viscoelastic effects of blood flow under various flow rates, Appl. Maths. Comput. 217, 5055–5067.

    Article  Google Scholar 

  • Brunette, J., R. Mongrain, J. laurier, R. Galaz, and J.C. Tardif, 2008, 3D flow study in a mildly stenotic coronary artery phanton using a whole volume PIV method, Med. Engng. Phy. 30, 1193–1200.

    Article  CAS  Google Scholar 

  • Chakravarty, S., P.K. Mandal, and Sarifuddin, 2005, Effect of surface irregularities on unsteady pulsatile flow in a compliant artery, Int. J. Nonlin. Mech. 40, 1268–1281.

    Article  Google Scholar 

  • Chien, S., S. Usami, and R. Skalak, 1984, “Blood flow in small tubes,” Handbook of Physiology, Section 2: The cardiovascular system, Volume IV, Parts 1 & 2: Microcirculation, Renkins E, Michel CC (editors), Bethesda, Amer. Physio. Soc., 217–249.

    Google Scholar 

  • Chmiel, H., I. Anadere, and E. Walitza, 1990, The determination of blood viscoelasticity in clinical hemorheology, Biorheol. 27, 883–894.

    CAS  Google Scholar 

  • Daly, B.J., 1976, A numerical study of pulsatile flow through stenosed canine femoral arteries, J. Biomech. 9, 465–475.

    Article  CAS  Google Scholar 

  • Etter, I. and W.R. Schowalter, 1965, Unsteady flow of an Oldroyd fluid in a circular tube, Trans. Soc. Rheol. 9, 351–369.

    Article  Google Scholar 

  • Gijsen, F., F. Van de Vosse, and J. Janssen, 1999, The influence of non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, J. Biomech. 32, 601–608.

    Article  CAS  Google Scholar 

  • Harlow, F.H. and J.E. Welch, 1965, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phy. Fluids 8, 2182–2189.

    Article  Google Scholar 

  • Hirt, C.W., 1968, Heuristic stability theory for finite difference equations, J. Comput. Phys. 2, 339–355.

    Article  Google Scholar 

  • Ikbal, A., S. Chakravarty, Sarifuddin and P.K Mandal, 2011, Numerical simulation of mass transfer to micropolar fluid flow past a stenosed artery, Int. J. Numer. Meth. Fluids 67, 1655–1676.

    Article  Google Scholar 

  • Janela, J., A. Moura, and A. Sequeira, 2010, A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries, J. Comput. Appl. Maths 234, 2783–2791.

    Article  Google Scholar 

  • Johnston, P.R. and D. Kilpatrick, 1991, Mathematical modelling of flow through an irregular arterial stenosis, J. Biomech. 24, 1069–1077.

    Article  CAS  Google Scholar 

  • Khanafer, K.M., P. Gadhoke, R. Berguer, and J.L. Bull, 2006, Modeling pulsatile flow in aortic aneurysms: Effect of non-Newtonian properties of blood, Biorheol. 43, 661–679.

    Google Scholar 

  • Leuprecht, A. and K. Perktold, 2000, Computer simulation of non-Newtonian effects on blood flow in large arteries, Comput. Meth. Biomech. Biomed. Engng. 4, 149–163.

    Article  Google Scholar 

  • Lukacova-Medvidova, M and A. Zauskova, 2008, Numerical modelling of shear-thinning non-Newtonian flows in compliant vessel, Int. J. Numer. Meth. Fluids 56, 1409–1415.

    Article  Google Scholar 

  • Mandal, P.K., S. Chakravarty, and A. Mandal, 2007, Numerical study of the unsteady flow of non-Newtonian fluid through differently shaped arterial stenoses, Int. J. Comput. Math. 84, 1059–1077.

    Article  Google Scholar 

  • Mann, D.E. and J.M. Tarbell, 1990, Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheol. 27, 711–733.

    CAS  Google Scholar 

  • Markham, G. and M.V. Proctor, 1983, Modifications to the twodimensional incompressible fluid flow code ZUNI to provide enhanced performance, C.E.G.B. Report TPRD/L/0063/M82.

    Google Scholar 

  • McDonald, D.A., 1974, Blood Flow in Arteries, 2nd ed., Edward Arnold, London.

    Google Scholar 

  • Mustapha, N, P.K. Mandal, P.R. Johnston, and N. Amin, 2010, A numerical simulation of unsteady blood flow through multiirregular arterial stenosis, Appl. Mathl. Model. 34, 1559–1573.

    Article  Google Scholar 

  • Nadau, L. and A. Sequeira, 2007, Numerical simulation of shear dependent viscoelastic flows with a combined finite elementfinite volume method, Comput. Maths. Appli. 53, 547–568.

    Article  Google Scholar 

  • Nerem, R.E., 1992, Vascular fluid mechanics, the arterial wall and arteriosclerosis, ASME J. Biomech. Engng. 114, 274–282.

    Article  CAS  Google Scholar 

  • O’Brien, V. and L.W.I. Ehrlich, 1985, Simple pulsatile flow in an artery with a constriction, J. Biomech. 18, 117–127.

    Article  Google Scholar 

  • Phan-Thien, N. and R.R. Huilgol, 1985, On the stability of the torsional flow of class of Oldroyd-type fluids, Rheol. Acta 24, 551–555.

    Article  Google Scholar 

  • Philips, W. and S. Deutsch, 1975, Towards a constitutive equation for blood, Biorheol. 12, 383–389.

    Google Scholar 

  • Politsis, S., A. Souvaliotis, and A.N. Beris, 1991, Viscoelastic flow in a periodically constricted tube: the combined effect of inertia, shear thining and elasticity, J. Rheol 35, 605–646.

    Article  Google Scholar 

  • Pontrelli, G., 2001, Blood flow through an axisymmetric stenosis, Proc. Instn. Mech. Engrs., Part H, J. Engng. Med. 215, 1–10.

    Article  CAS  Google Scholar 

  • Pontrelli, G., 2000, Blood flow through a circular pipe with an impulsive pressure gradient, Math. Mod. Meth. Appl. Sci. 10, 187–202.

    Google Scholar 

  • Robertson, A.M., R.G. Sequeira, and R.G. Owens, 2009, “Rheological models for blood,” Cardiovascular Mathematics. Modeling and simulation of the circulatory system (MS&A), Modeling, Simulation & Applications, L. Formaggia, A. Quarteroni, A. Veneziani (Eds.), Vol.1, Springer-Verlag, 211–241.

    Google Scholar 

  • Robertson, A.M., R.G. Sequeira, and M.V. Kameneva, 2008, “Hemorheology,” Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), G. Galdi, R. Rannacher, A.M. Robertson, S. Turek (Eds.), Vol. 37, Birkhauser Verlag, 63–120.

    Chapter  Google Scholar 

  • Ross, R., 1993, Atherosclerosis: a defense mechanism gone awry, Amer. J. Pathol 143, 987–1002.

    CAS  Google Scholar 

  • Sankar, D.S. and U. Lee, 2010, Two-fluid Casson model for pulsatile blood flow through stenosed arteries: A theoretical model, Commun. Nonlinear Sci. Numer. Simulat. 15, 2086–2097.

    Article  Google Scholar 

  • Sarifuddin, S. Chakravarty, and P.K. Mandal, 2009, Effect of asymmetry and roughness of stenosis on non-Newtonian flow past an arterial segment, Int. J. Comput. Meth. 6, 361–388.

    Article  Google Scholar 

  • Sarifuddin, S. Chakravarty, P.K. Mandal, and G.C. Layek, 2008, Numerical simulation of unsteady generalised Newtonian blood flow through differently shaped distensible arterial stenoses, J. Med. Engng. Tech. 32, 385–399.

    Article  CAS  Google Scholar 

  • Stergiopulos, N., M. Spiridon, F. Pythoud, and J.J. Meister, 1996, On the wave transmission and reflection properties of stenosis, J. Biomech. 29, 695–705.

    Article  Google Scholar 

  • Thurston, G.B. and N.M. Henderson, 2006, Effect of flow geometry on blood viscoelasticity, Biorheol. 43, 729–746.

    Google Scholar 

  • Thurston, G.B.,1989, Plasma release — Cell layering theory of blood flow, Biorol. 26, 199–214.

    Google Scholar 

  • Thurston, G.B., 1979, Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood, Biorheol. 16, 149–162.

    CAS  Google Scholar 

  • Thurston, G.B., 1972, Viscoelasticity of human blood, Biophys. J. 12, 1205–1217.

    Article  CAS  Google Scholar 

  • Usha, R. and K. Prema, 1999, Pulsatile flow of particle-fluid suspension model of blood under periodic body acceleration, ZAMP 50, 175–192.

    Article  Google Scholar 

  • Waters, S.L., J. Alastruey, D.A. Beard, P.H.M. Bovendeerd, P.F. Davies, G. Jayaraman, O.E. Jensen, J. Lee, K.H. Parker, A.S. Popel, T.W. Secomb, M. Siebes, S.J. Sherwin, R.J. Shipley, N.P. Smith, F.N. Van de Vosse, 2011, Theoretical models for coronary vascular biomechanics: Progress & challenges, Prog. Biophy. Mol. Biol. 104, 49–76.

    Article  Google Scholar 

  • Waters, N.D. and M.J. King, 1971, The unsteady flow of an elastico-viscous liquid in a straight pipe of circular cross section, J. Phys. D. Appl. Phys. 4, 204–211.

    Article  Google Scholar 

  • Welch, J. E., Harlow, F. H., Shannon, J. P. and Daly, B. J., 1966, The MAC method, Los Alamos Scientific Lab. Report LA-3425.

    Google Scholar 

  • Yakhot, A., L. Grinberg, and N. Nikitin, 2005, Modeling rough stenosis by immersed-boundary method, J. Biomech. 38, 1115–1127.

    Article  Google Scholar 

  • Yeleswarapu, K.K., 1996, Ph. D. thesis, Evaluation of continuum models for characterizing the constitutive behaviour of blood, University of Pittsburgh.

    Google Scholar 

  • Young, D.F. and F.Y. Tsai, 1973, Flow characteristics in models of arterial stenosis -I, J. Biomech. 6, 395–410.

    Article  CAS  Google Scholar 

  • Zendehboodi, G. R. and Moayeri, M. S., 1999, Comparison of physiological and simple pulsatile flows through stenosed arteries, J. Biomech. 32, 959–965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanta Kumar Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarifuddin, Chakravarty, S. & Mandal, P.K. Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction. Korea-Aust. Rheol. J. 25, 163–174 (2013). https://doi.org/10.1007/s13367-013-0017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-013-0017-6

Keywords

Navigation