Skip to main content
Log in

Simulation of extrudate swell using an extended finite element method

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

An extended finite element method (XFEM) is presented for the simulation of extrudate swell. A temporary arbitrary Lagrangian-Eulerian (ALE) scheme is incorporated to cope with the movement of the free surface. The main advantage of the proposed method is that the movement of the free surface can be simulated on a fixed Eulerian mesh without any need of re-meshing. The swell ratio of an upper-convected Maxwell fluid is compared with those of the moving boundary-fitted mesh problems of the conventional ALE technique, and those of Crochet & Keunings (1980). The proposed XFEM combined with the temporary ALE scheme can provide similar accuracy to the boundary-fitted mesh problems for low Deborah numbers. For high Deborah numbers, the method seems to be more stable for the extrusion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baaijens F. P. T., 1998, Mixed finite element methods for viscoelastic flow analysis: a review, Journal of Non-Newtonian Fluid Mechanics 79, 361–385.

    Article  CAS  Google Scholar 

  • Belytschko T., R. Gracie, and G. Ventura, 2009, A review of extended/generalized finite element methods for material modeling, Modelling and Simulation in Materials Science and Engineering 17, 043001.

    Article  Google Scholar 

  • Bogaerds A. C. B., A. M. Grillet, G. W. M. Peters, and F. P. T. Baaijens, 2002, Stability analysis of polymer shear flows using the extended pom-pom constitutive equations, Journal of Non-Newtonian Fluid Mechanics 108, 187–208.

    Article  CAS  Google Scholar 

  • Brooks A. N. and T. J. R. Hughes, 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 32, 199–259.

    Article  Google Scholar 

  • Choi Y. J., M. A. Hulsen, and H. E. H. Meijer, 2010, An extended finite element method for the simulation of particulate viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics 165, 607–624.

    Article  CAS  Google Scholar 

  • Crochet M. J. and R. Keunings, 1980, Die swell of a Maxwell fluid: Numerical prediction, Journal of Non-Newtonian Fluid Mechanics 7, 199–212.

    Article  CAS  Google Scholar 

  • D’Avino G. and M. A. Hulsen, 2010, Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution, Journal of Non-Newtonian Fluid Mechanics 165, 1602–1612.

    Article  Google Scholar 

  • Ganvir V., A. Lele, R. Thaokar, and B. P. Gautham, 2009, Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method, Journal of Non-Newtonian Fluid Mechanics 156, 21–28.

    Article  CAS  Google Scholar 

  • Hughes T. J. R., W. K. Liu, and T. K. Zimmermann, 1981, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering 29, 329–349.

    Article  Google Scholar 

  • Hulsen M. A., R. Fattal, and R. Kupferman, 2005, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, Journal of Non-Newtonian Fluid Mechanics 127, 27–39.

    Article  CAS  Google Scholar 

  • Keunings R., 1986, An algorithm for the simulation of transient viscoelastic flows with free surfaces, Journal of Computational Physics 62, 199–220.

    Article  Google Scholar 

  • Papanastasiou T. C., N. Malamataris, and K. Ellwood, 1992, A new outflow boundary condition, International Journal for Numerical Methods in Fluids 14, 587–608.

    Article  CAS  Google Scholar 

  • Papanastasiou T. C., V. D. Dimitriadis, L. E. Scriven, C. W. Macosko, and R. L. Sani, 1996, On the inlet stress condition and admissibility of solution of fiber-spinning, Advances in Polymer Technology 15, 237–244.

    CAS  Google Scholar 

  • Tanner R.I., 1985, Engineering Rheology, Oxford University Press.

  • Zhang L., T. Cui, and H. Liu, 2009, A set of symmetric quadrature rules on triangles and tetrahedral, Journal of Computational Mathematics 27, 89–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martien A. Hulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.J., Hulsen, M.A. Simulation of extrudate swell using an extended finite element method. Korea-Aust. Rheol. J. 23, 147–154 (2011). https://doi.org/10.1007/s13367-011-0018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-011-0018-2

Keywords

Navigation