Skip to main content
Log in

Effect of local kinematic history on the dynamic self-assembly of droplets in micro-expansion channels

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Dynamic self-assembly of droplets, regular structure formation of moving deformable objects in a confinement environment is a challenging problem in nonlinear dynamics and engineering patterned structure. In the current work, we investigated how the local kinematic history affects the dynamic self-assembly of picoliter-sized droplets near the expansion regions in microfluidic devices. The local kinematic history was controlled by the shape of the expansion region and characterized using computational fluid dynamics. Sizecontrolled aqueous droplets in light mineral oil were continuously generated at T-junction microchannel and transported toward the expansion region. The fast dynamics of the droplets was tracked using high-speed video microscopy. We found three types of dynamic droplet arrays: 1D, 2D zigzag, and irregular. The orderdisorder transition was associated not only with the droplet size, but also with the controlled local kinematic history, which results in the transient deformation of droplet and droplet-droplet interactions. The present results provide us with insight into the dynamic self-assembly of droplets and could be a useful guide for practical applications of droplet-based microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anna, S. L., N. Bontoux, and H. A. Stone, 2003, Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters 82, 364–366.

    Article  CAS  Google Scholar 

  • Beatus, T., T. Tlusty, and R. Bar-Ziv, 2006, Phonons in a one-dimensional microfluidic crystal. Nature Physics 2, 743–748.

    Article  CAS  Google Scholar 

  • Christopher, G.F. and S.L. Anna, 2007, Microfluidic methods for generating continuous droplet streams. Journal of Physics DApplied Physics 40, R319–R336.

    CAS  Google Scholar 

  • Chung, C., J. M. Kim, M. A. Hulsen, K. H. Ahn, and S. J. Lee 2009, Effect of viscoelasticity on drop dynamics in 5:1:5 contraction/expansion microchannel flow. Chemical Engineering Science 64, 4515–4524.

    Article  CAS  Google Scholar 

  • Dendukuri, D., K. Tsoi, T. A. Hatton, and P. S. Doyle, 2005, Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21, 2113–2116.

    Article  CAS  Google Scholar 

  • Lee, W., H. Amini, H. A. Stone, and D. Di Carlo, 2010, Dynamic self-assembly and control of microfluidic particle crystals. Proceedings of the National Academy of Sciences of the United States of America 107, 22413–22418.

    Article  CAS  Google Scholar 

  • Edd, J. F., D. Di Carlo, K. J. Humphry, S. Koster, D. Irimia, D. A. Weitz, and M. Toner, 2008, Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip 8, 1262–1264.

    Article  CAS  Google Scholar 

  • Garstecki, P., M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, 2006, Formation of droplets and bubbles in a microfluidic t-junction — scaling and mechanism of break-up. Lab on a Chip 6, 437–446.

    Article  CAS  Google Scholar 

  • Li, L., D. Mustafi, Q. Fu, V. Tereshko, D. L. L. Chen, J. D. Tice, and R. F. Ismagilov, 2006, Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 103, 19243–19248.

    Article  CAS  Google Scholar 

  • Shui, L. L., E. S. Kooij, D. Wijnperle, A. van den Berg, and J. C. T. Eijkel, 2009, Liquid crystallography: 3D microdroplet arrangements using microfluidics. Soft Matter 5, 2708–2712.

    Article  CAS  Google Scholar 

  • Song, H., D. L. Chen, and R. F. Ismagilov, 2006, Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45, 7336–56.

    Article  CAS  Google Scholar 

  • Teh, S. Y., R. Lin, L. H. Hungm and A. P. Lee, 2008, Droplet microfluidics. Lab on a Chip 8, 198–220.

    Article  CAS  Google Scholar 

  • Thorsen, T., R. W. Roberts, F. H. Arnold, and S. R. Quake, 2001, Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters 86, 4163–4166.

    Article  CAS  Google Scholar 

  • Yen, B. K. H., N. E. Stott, K. F. Jensen, and M. G. Bawendi, 2003, A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Advanced Materials 15, 1858–1862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Sik Lee or Ju Min Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Ahn, S.W., Kang, A.R. et al. Effect of local kinematic history on the dynamic self-assembly of droplets in micro-expansion channels. Korea-Aust. Rheol. J. 23, 119–126 (2011). https://doi.org/10.1007/s13367-011-0015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-011-0015-5

Keywords

Navigation