Finding equal-diameter tetrahedralizations of polyhedra

Abstract

In this paper we show that every simple polyhedron can be tiled into equal-diameter tetrahedra. Our constructive proof does not give bounds for the number of tetrahedra needed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

References

  1. Bezdek, A., Bisztriczky, T.: Finding equal-diameter triangulations in polygons. Beitr Algebra Geom. 56(2), 541–549 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  2. De Loera, J., Rambau, J., Santos, F.: Triangulations, structures for algorithms and applications, algorithms and computation in mathematics, vol. 25. Springer, Berlin (2010)

  3. Monsky, P.: On dividing a square into triangles. Am. Math. Mon. 77, 161–164 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  4. Zamfirescu, C.T.: Survey of two-dimensional acute triangulations. Discrete Math. 313(1), 135–149 (2013)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antal Joós.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joós, A. Finding equal-diameter tetrahedralizations of polyhedra. Beitr Algebra Geom 58, 679–698 (2017). https://doi.org/10.1007/s13366-017-0344-8

Download citation

Keywords

  • Triangulation
  • Tetrahedralization
  • Polyhedron
  • Tetrahedron

Mathematics Subject Classification

  • 52C17