Skip to main content
Log in

Computational aspects of Burnside rings, part I: the ring structure

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

The Burnside ring \(\mathcal {B}(G)\) of a finite group G, a classical tool in group theory and representation theory, is studied from the point of view of computational commutative algebra. Starting from a table of marks, we describe efficient algorithms for computing a presentation, the image of the mark homomorphism, the prime ideals and the prime ideal graph, the singular locus, the conductor in its integral closure, the connected components of its spectrum, and its idempotents. On the way, we provide methods for identifying p-residual subgroups, direct products of subgroups of coprime order, commutator subgroups, and perfect subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouc, S.: Burnside rings. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 2, pp. 739–804. Elsevier, Amsterdam (2000)

    Google Scholar 

  • Burnside, W.: Theory of Groups of Finite Order, 2nd edn. Cambridge University Press, Cambridge (1911)

    MATH  Google Scholar 

  • Călugăreanu, G.: The total number of subgroups of a finite Abelian group. Sci. Math. Japan 60, 157–167 (2004)

    MathSciNet  MATH  Google Scholar 

  • Dress, A.: A characterization of solvable groups. Math. Z. 110, 213–217 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Holt, D., Eick, B., O’Brien, E.: Handbook of Computational Group Theory. Chapman & Hall/CRC, Boca Raton (2005)

    Book  MATH  Google Scholar 

  • Huerta-Aparicio, L., Molina-Rueda, A., Raggi-Cárdenas, A., Valero-Elizondo, L.: On some invariants preserved by isomorphisms of tables of marks. Rev. Colomb. Mat. 43, 165–174 (2009)

    MathSciNet  MATH  Google Scholar 

  • Karpilovsky, G.: Group Representations, vol. 4, part III, North Holland Mathematics Studies, vol. 182. Elsevier, Amsterdam (1995)

  • Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  • Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  • Nicolson, D.M.: On the graph of prime ideals of the Burnside ring of a finite group. J. Algebra 51, 335–353 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Nicolson, D.M.: The orbit of the regular \(G\)-set under the full automorphism group of the Burnside ring of a finite group \(G\). J. Algebra 51, 288–299 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeiffer, G.: The subgroups of \(M_{24}\), or how to compute the table of marks of a finite group. Exp. Math. 6, 247270 (1997)

    Article  MathSciNet  Google Scholar 

  • Raggi-Cárdenas, A.G., Valero-Elizondo, L.: Groups with isomorphic Burnside rings. Arch. Math. 84, 193–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Solomon, L.: The Burnside algebra of a finite group. J. Comb. Theory 2, 603–615 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • The ApCoCoA Team, ApCoCoA: Approximate Computations in Commutative Algebra (2013). http://www.apcocoa.org

  • The GAP Group, GAP—groups, algorithms, and programming, version 4.7.6 (2014). http://www.gap-system.org

  • Thévenaz, J.: Isomorphic Burnside rings. Commun. Algebras 16, 1945–1947 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida, T.: Idempotents of Burnside rings and Dress induction theorem. J. Algebra 80, 90–105 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kreuzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuzer, M., Patil, D.P. Computational aspects of Burnside rings, part I: the ring structure. Beitr Algebra Geom 58, 427–452 (2017). https://doi.org/10.1007/s13366-016-0324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-016-0324-4

Keywords

Mathematics Subject Classification

Navigation