Computational aspects of Burnside rings, part I: the ring structure

Original Paper


The Burnside ring \(\mathcal {B}(G)\) of a finite group G, a classical tool in group theory and representation theory, is studied from the point of view of computational commutative algebra. Starting from a table of marks, we describe efficient algorithms for computing a presentation, the image of the mark homomorphism, the prime ideals and the prime ideal graph, the singular locus, the conductor in its integral closure, the connected components of its spectrum, and its idempotents. On the way, we provide methods for identifying p-residual subgroups, direct products of subgroups of coprime order, commutator subgroups, and perfect subgroups.


Burnside ring Table of marks Prime ideal graph Spectrum Connected component Quasi-idempotent Idempotent 

Mathematics Subject Classification

Primary 19A22 Secondary 13F99 13P99 20C40 


  1. Bouc, S.: Burnside rings. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 2, pp. 739–804. Elsevier, Amsterdam (2000)Google Scholar
  2. Burnside, W.: Theory of Groups of Finite Order, 2nd edn. Cambridge University Press, Cambridge (1911)MATHGoogle Scholar
  3. Călugăreanu, G.: The total number of subgroups of a finite Abelian group. Sci. Math. Japan 60, 157–167 (2004)MathSciNetMATHGoogle Scholar
  4. Dress, A.: A characterization of solvable groups. Math. Z. 110, 213–217 (1969)MathSciNetCrossRefMATHGoogle Scholar
  5. Holt, D., Eick, B., O’Brien, E.: Handbook of Computational Group Theory. Chapman & Hall/CRC, Boca Raton (2005)CrossRefMATHGoogle Scholar
  6. Huerta-Aparicio, L., Molina-Rueda, A., Raggi-Cárdenas, A., Valero-Elizondo, L.: On some invariants preserved by isomorphisms of tables of marks. Rev. Colomb. Mat. 43, 165–174 (2009)MathSciNetMATHGoogle Scholar
  7. Karpilovsky, G.: Group Representations, vol. 4, part III, North Holland Mathematics Studies, vol. 182. Elsevier, Amsterdam (1995)Google Scholar
  8. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  9. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Heidelberg (2005)MATHGoogle Scholar
  10. Nicolson, D.M.: On the graph of prime ideals of the Burnside ring of a finite group. J. Algebra 51, 335–353 (1978)MathSciNetCrossRefMATHGoogle Scholar
  11. Nicolson, D.M.: The orbit of the regular \(G\)-set under the full automorphism group of the Burnside ring of a finite group \(G\). J. Algebra 51, 288–299 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. Pfeiffer, G.: The subgroups of \(M_{24}\), or how to compute the table of marks of a finite group. Exp. Math. 6, 247270 (1997)MathSciNetCrossRefGoogle Scholar
  13. Raggi-Cárdenas, A.G., Valero-Elizondo, L.: Groups with isomorphic Burnside rings. Arch. Math. 84, 193–197 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. Solomon, L.: The Burnside algebra of a finite group. J. Comb. Theory 2, 603–615 (1967)MathSciNetCrossRefMATHGoogle Scholar
  15. The ApCoCoA Team, ApCoCoA: Approximate Computations in Commutative Algebra (2013).
  16. The GAP Group, GAP—groups, algorithms, and programming, version 4.7.6 (2014).
  17. Thévenaz, J.: Isomorphic Burnside rings. Commun. Algebras 16, 1945–1947 (1988)MathSciNetCrossRefMATHGoogle Scholar
  18. Yoshida, T.: Idempotents of Burnside rings and Dress induction theorem. J. Algebra 80, 90–105 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Managing Editors 2016

Authors and Affiliations

  1. 1.Fakultät für Informatik und MathematikUniversität PassauPassauGermany
  2. 2.Department of Mathematics/CSAIndian Institute of ScienceBangaloreIndia

Personalised recommendations