Advertisement

Quadrangle groups inclusions

  • António Breda d’Azevedo
  • Domenico A. Catalano
  • Ján KarabášEmail author
  • Roman Nedela
Original Paper
  • 91 Downloads

Abstract

In this paper we generalise Singerman’s results on triangle group inclusions to the broader class of generalised quadrangle groups, that is, Fuchsian groups with signature of genus 0 and generated by three or four elliptic generators. For any possible inclusion \(P<Q\) we also give the number of non-conjugate subgroups of Q isomorphic to P.

Keywords

Fuchsian group Riemann surface Generalised quadrangle group Triangle group Dessin d’enfant 

Mathematics Subject Classification

20H10 30F35 14H57 05E18 

Notes

Acknowledgments

This work was supported by the Research and Development Cooperation project Slovakia–Portugal, ID number: SK-PT-NEWPROJECT-12522, supported by the portuguese side by the Portuguese Foundation for Science and Technology FCT (Fundação para a Ciência e a Tecnologia). The work of the first two authors was partially supported by Portuguese funds through the CIDMA—Center for Research and Development in Mathematics and Applications (University of Aveiro) and FCT within project PEst-OE/MAT/UI4106/2014. The work of of the third and the fourth author was supported by the Ministry of Education of Slovak Republic, Grant VEGA 1/0150/14, Grant APVV-SK-PT-0004-12, and by the Project L01506 of the Czech Ministry of Education, Youth and Sports.

References

  1. Belyĭ, G.V.: On Galois extensions of a maximal cyclotomic field. Math. USSR Izv. 14(2), 247–256 (1980)CrossRefzbMATHGoogle Scholar
  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). [Computational algebra and number theory (London, 1993)]Google Scholar
  3. Breda d’Azevedo, A., Catalano, D.A., Karabáš, J., Nedela, R.: Maps of Archimedean class and operations on dessins. Discret. Math. 338(10), 1814–1825 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Breda d’Azevedo, A., Catalano, D.A., Karabáš, J., Nedela, R.: Census of quadrangle groups inclusions. In: Širáň, J., Jajcay, R. (eds.) Symmetries in Graphs, Maps, and Polytopes: 5th SIGMAP Workshop, West Malvern, UK, July 2014, pp. 27–69. Springer, Cham (2016a)Google Scholar
  5. Breda d’Azevedo, A., Catalano, D.A., Karabáš, J., Nedela, R.: Atlas of quadrangle groups inclusions. http://www.savbb.sk/~karabas/science.html#atlas. Accessed 25 May 2016 (2016b)
  6. Bujalance, E.: On cyclic groups of automorphisms of Riemann surfaces. J. Lond. Math. Soc. (2) 59(2), 573–584 (1999)MathSciNetCrossRefGoogle Scholar
  7. Bujalance, E., Cirre, F.J., Conder, M.: On extendability of group actions on compact Riemann surfaces. Trans. Amer. Math. Soc. 355(4), 1537–1557 (2003) (electronic)Google Scholar
  8. Greenberg, L.: Maximal Fuchsian groups. Bull. Am. Math. Soc. 69, 569–573 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Jones, G.A., Singerman, D.: Complex Functions. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  10. Katok, S.: Fuchsian groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)Google Scholar
  11. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (With an appendix by Don B. Zagier, Low-Dimensional Topology, II) (2004)Google Scholar
  12. Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups. Bull. Lond. Math. Soc. 2(6), 319–323 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 2(6), 29–38 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Singerman, D., Syddall, R.I.: The Riemann surface of a uniform dessin. Beiträge Algebra Geom. 44(2), 413–430 (2003)MathSciNetzbMATHGoogle Scholar
  15. The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.7.6. http://www.gap-system.org (2014)
  16. Wolfart, J.: The “obvious” part of Belyi’s theorem and Riemann surfaces with many automorphisms. In: Schneps, L., Lochak, P. (eds.) Geometric Galois actions, 1, Around Grothendieck’s Esquisse d’un programme London Math. Soc. Lecture Note Ser., vol. 242, pp. 97–112. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© The Managing Editors 2016

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal
  2. 2.Department of Computer ScienceMatej Bel University Faculty of Natural SciencesBanská BystricaSlovakia
  3. 3.Department of MathematicsUniversity of West Bohemia Faculty of Applied SciencesPlzeňCzech Republic

Personalised recommendations