Finding equal-diameter triangulations in polygons

  • András Bezdek
  • Ted Bisztriczky
Original Paper


In this paper we show that every simple polygon can be triangulated with equal-diameter triangles. Our constructive proof does not give bounds for the number of triangles needed. We also show that every simple polygon can be partitioned into an infinite number of equal-perimeter triangles.


Triangulation Diameter Perimeter 

Mathematics Subject Classification (2010)



  1. Aigner, M., Ziegler, G.M.: Proofs from the Book, 4th edn. Springer, New York (2010)Google Scholar
  2. Burago, Y.D., Zalgaller, V.A.: Polyhedral embedding of a net (Russian). Vestnik Leningrad Univ. 15, 66–80 (1960)MathSciNetzbMATHGoogle Scholar
  3. Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13, 263–268 (1980–81)MathSciNetGoogle Scholar
  4. De Loera, J., Rambau, J., Santos, F.: Triangulations. Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25 (2010)Google Scholar
  5. Gardner, M.: Mathematical games. A fifth collection of ’brain-teasers’. Sci. Am. 202(2), 150–154 (1960)CrossRefzbMATHGoogle Scholar
  6. Gardner, M.: Mathematical games. The games and puzzles of Lewis Caroll, and answers to February problems. Sci. Am. 202(3), 172–182 (1960)CrossRefGoogle Scholar
  7. Goldberg, M.: Advanced problems and solutions. Am. Math. Mon. 67(9), 923 (1960)CrossRefGoogle Scholar
  8. Maehara, H.: Acute triangulations of polygons. Eur. J. Combin. 23, 45–55 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Monsky, P.: On dividing a square into triangles. Am. Math. Mon. 77, 161–164 (1970)MathSciNetCrossRefGoogle Scholar
  10. Zamfirescu, C.T.: Survey of two-dimensional acute triangulations. Discrete Math. 313(1), 135–149 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Managing Editors 2014

Authors and Affiliations

  1. 1.MTA Rényi InstituteBudapestHungary
  2. 2.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA
  3. 3.Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations