Abstract
We use the discrete Fourier transformation of planar polygons, convolution filters, and a shape function to give a very simple and enlightening description of circulant polygon transformations and their iterates. We consider in particular Napoleon’s and the Petr–Douglas–Neumann theorem.



Similar content being viewed by others
References
Baker, H.F.: A remark on polygons. J. Lond. Math. Soc. 17, 162–164 (1942)
Berlekamp, E.R., Gilbert, E.N., Sinden, F.W.: A polygon problem. Am. Math. Mon. 72, 233–241 (1965)
Chang, G., Davis, P.J.: A circulant formulation of the Napoleon–Douglas–Neumann theorem. Linear Algebra Appl. 54, 87–95 (1983)
Darboux, G.: Sur un problème de géométrie élémentaire, Bull. Sci. Math. Astr. 2\(^\text{ e }\) Sér. 2, 298–304 (1878). http://archive.numdam.org/ARCHIVE/BSMA/BSMA_1878_2_2_1/BSMA_1878_2_2_1_298_1/BSMA_1878_2_2_1_298_1.pdf
Douglas, J.: On linear polygon transformations. Bull. Am. Math. Soc. 46, 551–560 (1940)
Fisher, J.C., Ruoff, D., Shilleto, J.: Perpendicular polygons. Am. Math. Mon. 92, 23–37 (1985)
Grünbaum, B.: Lecture Notes on Modern Elementary Geometry. EPrint Collection, University of Washington (1999). http://hdl.handle.net/1773/15592
Hajja, M., Martini, H., Spirova, M.: On converses of Napoleon’s theorem and a modified shape function. Beitr. Algebra Geom. 47, 363–383 (2006)
Lester, J.A.: Triangles I: shapes. Aequ. Math. 52, 30–54 (1996a)
Lester, J.A.: Triangles II: complex triangle coordinates. Aequ. Math. 52, 215–245 (1996b)
Lester, J.A.: Triangles III: complex triangle functions. Aequ. Math. 53, 4–35 (1997)
Martini, H.: On the theorem of Napoleon and related topics. Math. Semesterber. 43, 47–64 (1996)
Nakamura, H., Oguiso, K.: Elementary moduli space of triangles and iterative processes. J. Math. Sci. Univ. Tokyo 10, 209–224 (2003)
Neumann, B.H.: Some remarks on polygons. J. Lond. Math. Soc. 16, 230–245 (1941)
Neumann, B.H.: A remark on polygons. J. Lond. Math. Soc. 17, 165–166 (1942)
Nicollier, G., Stadler, A.: Limit shape of iterated Kiepert triangles. Elem. Math. 68 (2013), to appear
Nicollier, G.: Convolution filters for triangles. Forum Geom. 13 (2013), to appear. http://forumgeom.fau.edu
Pech, P.: The harmonic analysis of polygons and Napoleon’s theorem. J. Geom. Graph. 5, 13–22 (2001)
Petr, K.: O jedné větě pro mnohoúhelníky rovinné (On a theorem for planar polygons), Čas. Mat. Fys. 34, 166–172 (1905). http://www.digizeitschriften.de/dms/toc/?PPN=PPN31311028X_0034
Schoenberg, I.J.: The finite Fourier series and elementary geometry. Am. Math. Mon. 57, 390–404 (1950)
Shapiro, D.B.: A periodicity problem in plane geometry. Am. Math. Mon. 91, 97–108 (1984)
Vartziotis, D., Wipper, J.: On the construction of regular polygons and generalized Napoleon vertices. Forum Geom. 9, 213–223 (2009). http://forumgeom.fau.edu/FG2009volume9/FG200920index.html
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nicollier, G. Convolution filters for polygons and the Petr–Douglas–Neumann theorem. Beitr Algebra Geom 54, 701–708 (2013). https://doi.org/10.1007/s13366-013-0143-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13366-013-0143-9
Keywords
- Petr–Douglas–Neumann theorem
- Napoleon’s theorem
- Convolution filter for polygons
- Shape function
- Discrete Fourier transformation
