Skip to main content
Log in

Berezin quantization for holomorphic discrete series representations: the non-scalar case

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

Let M = G/K be a Hermitian symmetric space of the non-compact type and let π be a discrete series representation of G which is holomorphically induced from a unitary irreducible representation ρ of K. We define and we study a notion of Berezin symbol for operators acting on the space of π. In particular, we give explicit formulas for the Berezin symbols of the representation operators \({\pi(g) (g\in G)}\) and (X) (X in the Lie algebra of G). Moreover, we construct an adapted Weyl correspondence for π in the sense of Cahen (Differ Geom Appl 25:177–190, 2007). This generalizes the results already obtained in the case when ρ is a unitary character of K, see Cahen (Beiträge Algebra Geom 51:301–311, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali S.T., Englis M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4), 391–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ali, S.T., Englis, M.: Berezin–Toeplitz quantization over matrix domains. In: Contributions in Mathematical Physics, pp. 1–36. Hindustan Book Agency, New-Delhi (2007)

  • Arnal D., Cahen M., Gutt S.: Representations of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 45(3 série LXXIV), 123–141 (1988)

    MathSciNet  Google Scholar 

  • Arnal D., Cahen M., Gutt S.: Star exponential and holomorphic discrete series. Bull. Soc. Math. Belg., Sér. B 41, 207–227 (1989)

    MathSciNet  MATH  Google Scholar 

  • Arnal D., Cortet J.-C.: Nilpotent Fourier Transform and Applications. Lett. Math. Phys. 9, 25–34 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Berezin F.A.: Quantization. Math. USSR Izv. 8(5), 1109–1165 (1974)

    Article  MATH  Google Scholar 

  • Berezin F.A.: Quantization in complex symmetric domains. Math. USSR Izv. 9(2), 341–379 (1975)

    Article  MathSciNet  Google Scholar 

  • Cahen B.: Deformation Program for Principal Series Representations. Lett. Math. Phys. 36, 65–75 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cahen B.: Weyl quantization for semidirect products. Differential Geom. Appl. 25, 177–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cahen B.: Weyl quantization for principal series. Beiträge Algebra Geom. 48(1), 175–190 (2007)

    MathSciNet  MATH  Google Scholar 

  • Cahen B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105, 66–84 (2009)

    MathSciNet  MATH  Google Scholar 

  • Cahen B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19, 291–310 (2009)

    MathSciNet  MATH  Google Scholar 

  • Cahen B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51, 301–311 (2010)

    MathSciNet  MATH  Google Scholar 

  • Cahen B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47, 51–68 (2011)

    MathSciNet  MATH  Google Scholar 

  • Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7, 45–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds IV. Lett. Math. Phys. 34, 159–168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Cotton P., Dooley A.H.: Contraction of an Adapted Functional Calculus. J. Lie Theory 7, 147–164 (1997)

    MathSciNet  MATH  Google Scholar 

  • De Oliveira M.P.: Some Formulas for the Canonical Kernel Function. Geom. Dedicata 86, 227–247 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Folland B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, Princeton (1989)

    MATH  Google Scholar 

  • Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001)

    Google Scholar 

  • Knapp, A.W.: Representation theory of semi-simple groups. An overview based on examples, Princeton Math. Series t. 36 (1986)

  • Kirillov A.A.:: Lectures on the Orbit Method, Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004)

    Google Scholar 

  • Neeb K-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28. Walter de Gruyter, Berlin (2000)

  • Wildberger N.J.: Convexity and unitary representations of a nilpotent Lie group. Invent. Math. 89, 281–292 (1989)

    Article  MathSciNet  Google Scholar 

  • Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group. J. Aust. Math. Soc. A 56, 64–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Cahen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahen, B. Berezin quantization for holomorphic discrete series representations: the non-scalar case. Beitr Algebra Geom 53, 461–471 (2012). https://doi.org/10.1007/s13366-011-0066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-011-0066-2

Keywords

Mathematics Subject Classification (2000)

Navigation