Abstract
We study η-Einstein K-contact manifold whose metric is a Ricci soliton.
This is a preview of subscription content, access via your institution.
References
Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Prog. Math. 203, Birkhauser, Basel (2002)
Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)
Chow, B., Chu, S., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications, Part I: Geometric aspects, mathematical surveys and monographs. Am. Math. Soc. 135 (2004)
Duggal K.L., Sharma R.: Symmetries of Spacetimes and Riemannian Manifolds. Kluwer, Dordrecht (1999)
Ghosh A., Sharma R., Cho J.T.: Contact metric manifolds with η-parallel torsion tensor. Ann. Glob. Anal. Geom. 34, 287–299 (2008)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (preprint). arXiv.org/abs/math.DG/02111159
Sharma R.: Certain results on K-contact and (k, μ)-contact manifolds. J. Geom. 89, 138–147 (2008)
Sharma R., Ghosh A.: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Mod. Phys. 8, 149–154 (2011)
Tanno, S.: Promenades on Spheres. Lecture Notes, Tokyo Institute of Technology, Tokyo (1996)
Yano K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)
Yano K., Kon M.: Structures on Manifolds. Series in Pure Mathematics, vol. 3. World Scientific Pub. Co., Singapore (1984)
Zhang, X.: A note on Sasakian metrics with constant scalar curvature. J. Math. Phys. 50, 103505, 1–11 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghosh, A., Sharma, R. K-contact metrics as Ricci solitons. Beitr Algebra Geom 53, 25–30 (2012). https://doi.org/10.1007/s13366-011-0038-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13366-011-0038-6
Keywords
- Ricci soliton
- K-contact metric
- η-Einstein
Mathematics Subject Classification (2000)
- 53C25
- 53C44
- 53C21