An SIV macaque model of SIV and HAND: the need for adjunctive therapies in HIV that target activated monocytes and macrophages

Review
  • 19 Downloads

Abstract

Non-human primate models of AIDS and neuroAIDS are critical to study HIV infection of the CNS, neuropathology, and immune activation and macrophage accumulation that occurs in HAND. SIV, similar to HIV, infects CD4+ T lymphocytes and monocytes/macrophages. Virus enters the CNS early, and macrophage activation correlates with CNS disease, as well as inflammation outside of the CNS. Antiretroviral in HIV+ humans and SIV+ Rhesus macaques results in non-detectable plasma virus, decreased or non-detectable viral RNA or protein in the CNS. But, viral DNA rebounds following therapy interruption, demonstrating the presence of replication competent virus in the CNS within myeloid cells. In this brief review, we discuss our findings using a Rhesus macaque model of SIV-associated CNS infection and pathology, focusing on monocyte/macrophage activation and the link between CNS and cardiac disease. We conclude with recent studies using adjunctive therapy targeting monocytes/macrophages with ART to prevent or diminish CNS pathology that may be associated with HAND.

Keywords

SIV HIV Monocyte Macrophages HAND 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Avalos CR, Price SL, Forsyth ER, Pin JN, Shirk EN, Bullock BT, Queen SE, Li M, Gellerup D, O'Connor SL, Zink MC, Mankowski JL, Gama L, Clements JE (2016) Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques. J Virol 90:5643–5656CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck SE, Kelly KM, Queen SE, Adams RJ, Zink MC, Tarwater PM, Mankowski JL (2015) Macaque species susceptibility to simian immunodeficiency virus: increased incidence of SIV central nervous system disease in pigtailed macaques versus rhesus macaques. J Neuro-Oncol 21:148–158Google Scholar
  3. Burdo T, Lackner A, Williams K (2014) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254:102–113CrossRefGoogle Scholar
  4. Burdo TH, Lackner A, Williams KC (2013a) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254:102–113CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, Rosenberg ES, Ellis RJ, Williams KC (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204:154–163CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burdo TH, Orzechowski K, Knight HL, Miller AD, Williams K (2012) Dorsal root ganglia damage in SIV-infected rhesus macaques: an animal model of HIV-induced sensory neuropathy. Am J Pathol 180:1362–1369CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6:e1000842CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burdo TH, Walker J, Williams KC (2015) Macrophage polarization in AIDS: dynamic interface between anti-viral and anti-inflammatory macrophages during acute and chronic infection. J Clin Cell Immunol 6Google Scholar
  9. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC (2013b) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS (Lond, Engl) 27:1387–1395CrossRefGoogle Scholar
  10. Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT, Little D, Sidell N, Kane MA, Yu J, Jones JW, Santangelo PJ, Zurla C, McKinnon LR, Arnold KB, Woody CE, Walter L, Roos C, Noll A, Van Ryk D, Jelicic K, Cimbro R, Gumber S, Reid MD, Adsay V, Amancha PK, Mayne AE, Parslow TG, Fauci AS, Ansari AA (2016) Sustained virologic control in SIV+ macaques after antiretroviral and alpha4beta7 antibody therapy. Science 354:197–202CrossRefPubMedPubMedCentralGoogle Scholar
  11. Byrareddy SN, Kallam B, Arthos J, Cicala C, Nawaz F, Hiatt J, Kersh EN, McNicholl JM, Hanson D, Reimann KA, Brameier M, Walter L, Rogers K, Mayne AE, Dunbar P, Villinger T, Little D, Parslow TG, Santangelo PJ, Villinger F, Fauci AS, Ansari AA (2014) Targeting alpha4beta7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nat Med 20:1397–1400CrossRefPubMedPubMedCentralGoogle Scholar
  12. Campbell J, Ratai E-M, Autissier P, Nolan D, Tse S, Miller A, Gonzalez G, Salemi M, Williams K (2014a) Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog 10:e1004533CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, Soulas C, González RG, Ratai E-M, Williams KC (2011) Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One 6:e18688CrossRefPubMedPubMedCentralGoogle Scholar
  14. Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM (2014b) The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS 28:2175–2187CrossRefPubMedGoogle Scholar
  15. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L'Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neuro-Oncol 7:528–541Google Scholar
  17. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, Pate KA, Wietgrefe SW, O'Connor SL, Pianowski L, Haase AT, Van Lint C, Siliciano RF, Clements JE, Group L-SS (2017) Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14CrossRefPubMedGoogle Scholar
  18. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL, Fox HS, Kolson DL, Grant I, Singer E, Yiannoutsos CT, Sherman S, Gensler G, Moore DJ, Chen T, Soukup VM (2013) Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr 62:487–495CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hasegawa A, Liu H, Ling B, Borda JT, Alvarez X, Sugimoto C, Vinet-Oliphant H, Kim WK, Williams KC, Ribeiro RM, Lackner AA, Veazey RS, Kuroda MJ (2009) The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood 114:2917–2925CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010a) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  21. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010b) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol 17:3–16Google Scholar
  22. Hickey WF, Williams K (1998) Mononuclear phagocyte heterogeneity and the blood brain barrier: a model for HIV-1 neuropathogenesis. Chapmann and Hall, New YorkGoogle Scholar
  23. Igarashi T, Endo Y, Englund G, Sadjadpour R, Matano T, Buckler C, Buckler-White A, Plishka R, Theodore T, Shibata R, Martin M (1999) Emergence of a highly pathogenic simian/human immunodeficiency virus in a rhesus macaque treated with anti-CD8 mAb during a primary infection with a nonpathogenic virus. Proc Natl Acad Sci U S A 96:14049–14054CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jin X, McGrath MS, Xu H (2015) Inhibition of HIV expression and integration in macrophages by methylglyoxal-bis-guanylhydrazone. J Virol 89:11176–11189CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim WK, Sun Y, Do H, Autissier P, Halpern EF, Piatak M Jr, Lifson JD, Burdo TH, McGrath MS, Williams K (2010) Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage. J Leukoc Biol 87:557–567CrossRefPubMedGoogle Scholar
  26. Lakritz JR, Thibault DM, Robinson JA, Campbell JH, Miller AD, Williams KC, Burdo TH (2016) α4-integrin antibody treatment blocks monocyte/macrophage traffic to, vascular cell adhesion molecule-1 expression in, and pathology of the dorsal root ganglia in an SIV macaque model of HIV-peripheral neuropathy. Am J Pathol 186:1754–1761CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lakritz JR, Yalamanchili S, Polydefkis MJ, Miller AD, McGrath MS, Williams KC, Burdo TH (2017) An oral form of methylglyoxal-bis-guanylhydrazone reduces monocyte activation and traffic to the dorsal root ganglia in a primate model of HIV-peripheral neuropathy. J NeurovirolGoogle Scholar
  28. Marcondes MC, Flynn C, Huitron-Rezendiz S, Watry DD, Zandonatti M, Fox HS (2009) Early antiretroviral treatment prevents the development of central nervous system abnormalities in simian immunodeficiency virus-infected rhesus monkeys. AIDS 23:1187–1195CrossRefPubMedPubMedCentralGoogle Scholar
  29. Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, Deleage C, McAtee BB, He T, Apetrei C, Easley K, Pahwa S, Collman RG, Derdeyn CA, Davenport MP, Estes JD, Silvestri G, Lackner AA, Paiardini M (2014) CD4 depletion in SIV-infected macaques results in macrophage and microglia infection with rapid turnover of infected cells. PLoS Pathog 10:e1004467CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pulliam L, Clarke JA, McGrath MS, Moore D, McGuire D (1996) Monokine products as predictors of AIDS dementia. AIDS 10:1495–1500CrossRefPubMedGoogle Scholar
  31. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349:692–695CrossRefPubMedGoogle Scholar
  32. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921CrossRefPubMedGoogle Scholar
  33. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283:857–860CrossRefPubMedGoogle Scholar
  34. Strickland SL, Gray RR, Lamers SL, Burdo TH, Huenink E, Nolan DJ, Nowlin B, Alvarez X, Midkiff CC, Goodenow MM, Williams K, Salemi M (2012) Efficient transmission and persistence of low-frequency SIVmac251 variants in CD8-depleted rhesus macaques with different neuropathology. J Gen Virol 93:925–938CrossRefPubMedPubMedCentralGoogle Scholar
  35. Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, Corsini E, Abdelbaky A, Zanni MV, Hoffmann U, Williams KC, Lo J, Grinspoon SK (2012) Arterial inflammation in patients with HIV. JAMA 308:379–386CrossRefPubMedPubMedCentralGoogle Scholar
  36. Walker J, Miller A, Williams K (2015) Increased numbers of Cd206+ macrophages correlates with Siv-associated cardiovascular pathology. J Med Primatol 44:333Google Scholar
  37. Walker JA, Miller AD, Burdo TH, McGrath MS, Williams KC (2017) Direct targeting of macrophages with methylglyoxal-bis-guanylhydrazone decreases SIV-associated cardiovascular inflammation and pathology. J Acquir Immune Defic Syndr 74:583–592CrossRefPubMedGoogle Scholar
  38. Walker JA, Sulciner ML, Nowicki KD, Miller AD, Burdo TH, Williams KC (2014) Elevated numbers of CD163+ macrophages in hearts of simian immunodeficiency virus-infected monkeys correlate with cardiac pathology and fibrosis. AIDS Res Hum Retrovir 30:685–694CrossRefPubMedPubMedCentralGoogle Scholar
  39. Weed MR, Gold LH, Polis I, Koob GF, Fox HS, Taffe MA (2004) Impaired performance on a rhesus monkey neuropsychological testing battery following simian immunodeficiency virus infection. AIDS Res Hum Retrovir 20:77–89CrossRefPubMedGoogle Scholar
  40. Westmoreland SV, Halpern E, Lackner AA (1998) Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. J Neuro-Oncol 4:260–268Google Scholar
  41. Williams K, Lackner A, Mallard J (2016) Non-human primate models of SIV infection and CNS neuropathology. Current Opinion in Virology 19:92–98CrossRefPubMedPubMedCentralGoogle Scholar
  42. Williams K, Westmoreland S, Greco J, Ratai E, Lentz M, Kim WK, Fuller RA, Kim JP, Autissier P, Sehgal PK, Schinazi RF, Bischofberger N, Piatak M, Lifson JD, Masliah E, Gonzalez RG (2005) Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J Clin Invest 115:2534–2545CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zink MC, Amedee AM, Mankowski JL, Craig L, Didier P, Carter DL, Munoz A, Murphey-Corb M, Clements JE (1997) Pathogenesis of SIV encephalitis. Selection and replication of neurovirulent SIV. Am J Pathol 151:793–803PubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2018

Authors and Affiliations

  1. 1.Department of BiologyBoston CollegeChestnut HillUSA

Personalised recommendations