Skip to main content
Log in

Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that serine residues at positions 162 and 166 of the rabies virus (RABV) phosphoprotein (P) are critical for oxidative stress induced by CVS in cultured cells. We have now evaluated the P of two street RABV variants and Mokola (MOK) virus. The P of these viruses, like CVS, induces an increase in complex I activities and reactive oxygen species levels in transfected cells. Although the sequence homology of P is only 45% with MOK (higher for street viruses) and CVS, serine residues are conserved at positions 162 and 166, suggesting their potential importance in oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alandijany T, Kammouni W, Roy Chowdhury SK, Fernyhough P, Jackson AC (2013) Mitochondrial dysfunction in rabies virus infection of neurons. J Neurovirol 19:537–549

  • Bansal S, Leu AN, Gonzalez FJ, Guengerich FP, Chowdhury AR, Anandatheerthavarada HK, Avadhani NG (2014) Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J Biol Chem 289:9936–9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79:7673–7681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenik M, Chebli K, Blondel D (1995) Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mrna is mediated by a ribosomal leaky scanning mechanism. J Virol 69:707–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, Bell DA (2012) Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res 40:7416–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M (2010) Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med 48:306–317

    Article  CAS  PubMed  Google Scholar 

  • Familusi JB, Osunkoya BO, Moore DL, Kemp GE, Fabiyi A (1972) A fatal human infection with Mokola virus. Am J Trop Med Hyg 21:959–963

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, Obach D, Prevost MC, Jacob Y, Bourhy H (2008) Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol 82:4774–4784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Shin DM, Ramakrishna L, Goussetis DJ, Platanias LC, Xiong H, Morse HC III, Ozato K (2015) IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes. Nat Commun 6:6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, Tyynismaa H, Yamasaki T, Yamada K, Kang D, Suomalainen A, Sunagawa K (2015) Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One 10:e0119687

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson AC (2013a) Current and future approaches to the therapy of human rabies. Antivir Res 99:61–67

    Article  CAS  PubMed  Google Scholar 

  • Jackson AC (2013b) Human disease. In: Jackson AC (ed) Rabies: scientific basis of the disease and its management, Third edn. Elsevier Academic Press, Oxford, pp 269–298

    Chapter  Google Scholar 

  • Jackson AC (2013c) Rabies: scientific basis of the disease and its management, Third edn. Elsevier Academic Press, Oxford

    Google Scholar 

  • Jackson AC, Fu ZF (2013) Pathogenesis. In: Jackson AC (ed) Rabies: scientific basis of the disease and its management, Third edn. Elsevier Academic Press, Oxford, pp 299–349

    Chapter  Google Scholar 

  • Jackson AC, Kammouni W, Zherebitskaya E, Fernyhough P (2010) Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol 84:4697–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Liu Y, Nelin LD (2015) Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages. J Biol Chem 290:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Kaminski M, Kiessling M, Suss D, Krammer PH, Gulow K (2007) Novel role for mitochondria: protein kinase Cθ-dependent oxidative signaling organelles in activation-induced T-cell death. Mol Cell Biol 27:3625–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammouni W, Hasan L, Saleh A, Wood H, Fernyhough P, Jackson AC (2012) Role of nuclear factor-κB in oxidative stress associated with rabies virus infection of adult rat dorsal root ganglion neurons. J Virol 86:8139–8146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammouni W, Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC (2015) Rabies virus phosphoprotein interacts with mitochondrial complex I and induces mitochondrial dysfunction and oxidative stress. J Neurovirol 21:370–382

  • Kammouni W, Wood H, Jackson AC (2017) Serine residues at positions 162 and 166 of the rabies virus phosphoprotein are critical for the induction of oxidative stress in rabies virus infection. J Neurovirol 23:358–368

  • Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ (2016) Role of p85alpha in neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget 7:23096–23105

    Article  PubMed  PubMed Central  Google Scholar 

  • Majer A, Medina SJ, Niu V, Abrenica B, Manguit KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA (2012) Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 8:e1003002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadin-Davis SA, Abdel-Malik M, Armstrong J, Wandeler AI (2002) Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. Virology 298:286–305

    Article  CAS  PubMed  Google Scholar 

  • Olsson MG, Rosenlof LW, Kotarsky H, Olofsson T, Leanderson T, Morgelin M, Fellman V, Akerstrom B (2013) The radical-binding lipocalin A1M binds to a complex I subunit and protects mitochondrial structure and function. Antioxid Redox Signal 18:2017–2028

    Article  CAS  PubMed  Google Scholar 

  • Patterson HC, Gerbeth C, Thiru P, Vogtle NF, Knoll M, Shahsafaei A, Samocha KE, Huang CX, Harden MM, Song R, Chen C, Kao J, Shi J, Salmon W, Shaul YD, Stokes MP, Silva JC, Bell GW, MacArthur DG, Ruland J, Meisinger C, Lodish HF (2015) A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proc Natl Acad Sci U S A 112:E5679–E5688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puustinen P, Rytter A, Mortensen M, Kohonen P, Moreira JM, Jaattela M (2014) CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation. J Cell Biol 204:713–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossiter JP, Jackson AC (2013) Pathology. In: Jackson AC (ed) Rabies: scientific basis of the disease and its management, Third edn. Elsevier Academic Press, Oxford, pp 351–386

    Chapter  Google Scholar 

  • Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome in experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513–521

    Article  CAS  PubMed  Google Scholar 

  • Udow SJ, Marrie RA, Jackson AC (2013) Clinical features of dog- and bat-acquired rabies in humans. Clin Infect Dis 57:689–696

    Article  PubMed  Google Scholar 

  • Vidy A, Chelbi-Alix M, Blondel D (2005) Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79:14411–14420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldron RT, Rey O, Zhukova E, Rozengurt E (2004) Oxidative stress induces protein kinase C-mediated activation loop phosphorylation and nuclear redistribution of protein kinase D. J Biol Chem 279:27482–27493

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Olczak A, Forsberg LS, Maier RJ (2009) Oxidative stress-induced peptidoglycan deacetylase in helicobacter pylori. J Biol Chem 284:6790–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunner WH, Conzelmann K-K (2013) Rabies virus. In: Jackson AC (ed) Rabies: scientific basis of the disease and its management, Third edn. Elsevier Academic Press, Oxford, pp 17–60

    Chapter  Google Scholar 

  • Zeiler FA, Jackson AC (2016) Critical appraisal of the Milwaukee protocol for rabies: this failed approach should be abandoned. Can J Neurol Sci 43:44–51

    Article  PubMed  Google Scholar 

  • Zhang T, Sell P, Braun U, Leitges M (2015) PKD1 protein is involved in reactive oxygen species-mediated mitochondrial depolarization in cooperation with protein kinase Cδ. J Biol Chem 290:10472–10485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Stephanie Booth and Anna Majer (Public Health Agency of Canada, Winnipeg, Manitoba, Canada) for assistance with the microarrays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Jackson.

Ethics declarations

Funding statement

This work was supported by a Research Manitoba Bridge Funding Award and the Department of Internal Medicine, University of Manitoba (to A.C. Jackson).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammouni, W., Wood, H. & Jackson, A.C. Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species. J. Neurovirol. 23, 756–762 (2017). https://doi.org/10.1007/s13365-017-0550-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-017-0550-z

Keywords

Navigation