Journal of NeuroVirology

, Volume 22, Issue 5, pp 564–574 | Cite as

HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution

  • Lance M. Villeneuve
  • Phillip R. Purnell
  • Kelly L. Stauch
  • Shannon E. Callen
  • Shilpa J. Buch
  • Howard S. FoxEmail author


With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.


HIV-1-associated neurocognitive disorders Mitochondria Neurodegeneration neuroAIDS 



We would like to thank the Proteomics Core Facility members at the University of Nebraska Medical Center, under the direction of Dr. Pawel Ciborowski, for all their support and aid in the proteomics experiments.

Compliance with ethical standards

Conflict of interest

Lance M. Villeneuve, Phillip R. Purnell, Kelly L. Stauch, Shannon E. Callen, Shilpa J. Buch, and Howard S. Fox report no conflict of interest.

Funding sources

This work was funded by the National Institute of Health (NIH) grants P30MH062261, R01DA027729, R01DA033150, R01DA36157, and R01MH73490.

Supplementary material

13365_2016_424_MOESM1_ESM.xls (126 kb)
Supplementary file 1: Table S1 List of select proteins with significantly altered expression profiles in the HIV-1 Tg rat brain synaptic mitochondria. Proteomic data was analyzed through CyberT ( A Bayesian analysis of the data was performed using a Bayesian coefficient of 12. Multiple testing corrections were applied. For significance, p < 0.05 and cumulative posterior probability of differential expression (Cum PPDE) > 0.95. (XLS 126 kb)
13365_2016_424_MOESM2_ESM.tiff (16.1 mb)
Supplementary file 2: Fig. S1 Histograms demonstrating sample reproducibility. Area under curve data obtained from mass spectrometry was used to generate histograms comparing samples against one another within each experimental group. Pearson’s r coefficient was generated for each comparison. (TIFF 16456 kb)
13365_2016_424_MOESM3_ESM.tiff (668 kb)
Supplementary file 3: Fig. S2 Gene Ontology (GO) biological process analysis. Data from the mass spectrometry analysis were uploaded into the Panther classification system ( to determine which biological processes were most represented in our samples. (TIFF 667 kb)


  1. Agrawal L, Louboutin JP, Marusich E, Reyes BA, Van Bockstaele EJ, Strayer DS (2010) Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res 1306:116–130CrossRefPubMedGoogle Scholar
  2. Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP (2013) Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PLoS One 8, e61399CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t test and statistical inferences of gene changes. Bioinformatics 17:509–519CrossRefPubMedGoogle Scholar
  4. Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N (2010) HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med 48:1388–1398CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K et al (2013) HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 8, e68376CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134PubMedGoogle Scholar
  7. Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C, Sweet T et al (2009) Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 284:11364–11373CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dietrich MO, Liu ZW, Horvath TL (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155:188–199CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H et al (2005) Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25:8375–8385CrossRefPubMedGoogle Scholar
  10. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44CrossRefPubMedGoogle Scholar
  11. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247CrossRefPubMedGoogle Scholar
  12. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Probes 11:O111 016717.Google Scholar
  13. Hendrickson SL, Hutcheson HB, Ruiz-Pesini E, Poole JC, Lautenberger J, Sezgin E et al (2008) Mitochondrial DNA haplogroups influence AIDS progression. Aids 22:2429–2439CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hendrickson SL, Kingsley LA, Ruiz-Pesini E, Poole JC, Jacobson LP, Palella FJ et al (2009) Mitochondrial DNA haplogroups influence lipoatrophy after highly active antiretroviral therapy. J Acquir Immune Defic Syndr 51:111–116CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hendrickson SL, Lautenberger JA, Chinn LW, Malasky M, Sezgin E, Kingsley LA et al (2010) Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression. PLoS One 5, e12862CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hollenbaugh JA, Munger J, Kim B (2011) Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 415:153–159CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 24:9531–9540CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jonas E (2006) BCL-xL regulates synaptic plasticity. Mol Interv 6:208–222CrossRefPubMedGoogle Scholar
  19. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892CrossRefPubMedGoogle Scholar
  20. Kayala MA, Baldi P (2012) Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res 40:W553–W559CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kramer A, Green J, Pollard J, Jr., Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530Google Scholar
  22. Liao W, Tan G, Zhu Z, Chen Q, Lou Z, Dong X et al (2012) Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein. J Proteome Res 11:5109–5123CrossRefPubMedGoogle Scholar
  23. Lu G, Matsuura SE, Barrientos A, Scott WA (2013) HIV-1 infection is blocked at an early stage in cells devoid of mitochondrial DNA. PLoS One 8, e78035CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF et al (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277:29626–29633CrossRefPubMedGoogle Scholar
  25. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904CrossRefPubMedGoogle Scholar
  26. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288CrossRefPubMedGoogle Scholar
  27. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D et al (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416CrossRefPubMedGoogle Scholar
  28. Moran LM, Booze RM, Webb KM, Mactutus CF (2013) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147CrossRefPubMedGoogle Scholar
  29. Nath A, Sacktor N (2006) Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr Opin Neurol 19:358–361CrossRefPubMedGoogle Scholar
  30. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767CrossRefPubMedGoogle Scholar
  31. Olivetta E, Mallozzi C, Ruggieri V, Pietraforte D, Federico M, Sanchez M (2009) HIV-1 Nef induces p47(phox) phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line. J Cell Biochem 106:812–822CrossRefPubMedGoogle Scholar
  32. Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J et al (2014) Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. Aids 28:297–309CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218CrossRefPubMedGoogle Scholar
  34. Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101CrossRefPubMedGoogle Scholar
  35. Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA (2005) HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev 50:14–26CrossRefPubMedGoogle Scholar
  36. Rasheed S, Yan JS, Lau A, Chan AS (2008) HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 3, e3003CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N et al (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98:9271–9276CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ringrose JH, Jeeninga RE, Berkhout B, Speijer D (2008) Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J Virol 82:4320–4330CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6, e21746CrossRefPubMedPubMedCentralGoogle Scholar
  40. Roscoe RF Jr, Mactutus CF, Booze RM (2014) HIV-1 transgenic female rat: synaptodendritic alterations of medium spiny neurons in the nucleus accumbens. J Neuroimmune Pharmacol 9:642–653CrossRefPubMedPubMedCentralGoogle Scholar
  41. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  42. Saha RN, Pahan K (2003) Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86:1057–1071CrossRefPubMedPubMedCentralGoogle Scholar
  43. Salmen S, Colmenares M, Peterson DL, Reyes E, Rosales JD, Berrueta L (2010) HIV-1 Nef associates with p22-phox, a component of the NADPH oxidase protein complex. Cell Immunol 263:166–171CrossRefPubMedGoogle Scholar
  44. Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277–282CrossRefPubMedGoogle Scholar
  45. Seong IS, Ivanova E, Lee J, Choo YS, Fossale E, Anderson M et al (2005) HD CAG repeats implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–2880CrossRefPubMedGoogle Scholar
  46. Songok EM, Luo M, Liang B, McLaren P, Kaefer N, Apidi W et al (2012) Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state. PLoS One 7, e30048CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stauch KL, Purnell PR, Fox HS (2014a) Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 13:2620–2636CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stauch KL, Purnell PR, Fox HS (2014b) Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 6:320–334CrossRefGoogle Scholar
  49. Stauch KL, Purnell PR, Villeneuve LM, Fox HS (2015) Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism. Proteomics 15:1574–1586CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tiede LM, Cook EA, Morsey B, Fox HS (2011) Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis 2, e246CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vigorito M, Connaghan KP, Chang SL (2015) The HIV-1 transgenic rat model of neuroHIV. Brain Behav ImmunGoogle Scholar
  53. Vilhardt F, Plastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E et al (2002) The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem 277:42136–42143CrossRefPubMedGoogle Scholar
  54. Villeneuve L, Tiede LM, Morsey B, Fox HS (2013) Quantitative proteomics reveals oxygen-dependent changes in neuronal mitochondria affecting function and sensitivity to rotenone. J Proteome Res 12:4599–4606CrossRefPubMedPubMedCentralGoogle Scholar
  55. Villeneuve LM, Stauch KL, Fox HS (2014a) Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands. J ProteomicsGoogle Scholar
  56. Villeneuve LM, Purnell PR, Boska MD, Fox HS (2014b) Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats. Mol NeurobiolGoogle Scholar
  57. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678CrossRefPubMedGoogle Scholar
  58. Wu RF, Ma Z, Myers DP, Terada LS (2007) HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J Biol Chem 282:37412–37419CrossRefPubMedGoogle Scholar
  59. Xiong H, McCabe L, Skifter D, Monaghan DT, Gendelman HE (2003a) Activation of NR1a/NR2B receptors by monocyte-derived macrophage secretory products: implications for human immunodeficiency virus type one-associated dementia. Neurosci Lett 341:246–250CrossRefPubMedGoogle Scholar
  60. Xiong H, Boyle J, Winkelbauer M, Gorantla S, Zheng J, Ghorpade A et al (2003b) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71:600–607CrossRefPubMedGoogle Scholar
  61. Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY et al (2009) A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138:947–960CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2016

Authors and Affiliations

  • Lance M. Villeneuve
    • 1
  • Phillip R. Purnell
    • 1
  • Kelly L. Stauch
    • 1
  • Shannon E. Callen
    • 1
  • Shilpa J. Buch
    • 1
  • Howard S. Fox
    • 1
    Email author
  1. 1.Departments of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations