Advertisement

Journal of NeuroVirology

, Volume 21, Issue 4, pp 335–345 | Cite as

Reverse genetics of rabies virus: new strategies to attenuate virus virulence for vaccine development

  • Shimao Zhu
  • Hui Li
  • Chunhua Wang
  • Farui Luo
  • Caiping Guo
Review

Abstract

Rabies is an ancient neurological disease that is almost invariably fatal once the clinical symptoms develop. Currently, prompt wound cleansing after exposing to a potentially rabid animal and vaccination using rabies vaccine combined with administration of rabies immune globulin are the only effective methods for post-exposure prophylaxis against rabies. Reverse genetic technique is a novel approach to investigate the function of a specific gene by analyzing the phenotypic effects through directly manipulating the gene sequences. It has revolutionized and provided a powerful tool to study the molecular biology of RNA viruses and has been widely used in rabies virus research. The attenuation of rabies virus virulence is the prerequisite for rabies vaccine development. Given the current challenge that sufficient and affordable high-quality vaccines are limited and lacking for global rabies prevention and control, highly cell-adapted, stable, and attenuated rabies viruses with broad cross-reactivity against different viral variants are ideal candidates for consideration to meet the need for human rabies control in the future. A number of approaches have been pursued to reduce the virulence of the virus and improve the safety of rabies vaccines. The application of reverse genetic technique has greatly advanced the engineering of rabies virus and paves the avenue for utilizing rabies virus for vaccine against rabies, viral vectors for exogenous antigen expression, and gene therapy in the future.

Keywords

Rabies virus Reverse genetic technique Attenuation Vaccine 

Notes

Acknowledgments

We acknowledge support from Pres. Jincai Wang (Shenzhen Weiguang Biological Products Co., Ltd). This work was financially supported by Guangdong Engineering Research and Development Center.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abraham G, Banerjee AK Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73: 1504–1508Google Scholar
  2. Albertini AA, Ruigrok RW, Blondel D (2011) Rabies virus transcription and replication. Adv Virus Res 79:1–22PubMedCrossRefGoogle Scholar
  3. Ball LA, White CN (1976) Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:442–446PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC (2014) Expression of IFNγ by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J VirolGoogle Scholar
  5. Bette M, Kaut O, Schäfer MK, Weihe E (2003) Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. J Comp Neurol 465:417–430PubMedCrossRefGoogle Scholar
  6. Bette M, Schäfer MK, van Rooijen N, Weihe E, Fleischer B (1993) Distribution and kinetics of superantigen-induced cytokine gene expression in mouse spleen. J Exp Med 178:1531–1539PubMedCrossRefGoogle Scholar
  7. Blum A, Miller H (2000) The major histocompatibility complex and inflammation. South Med J 93:169–172PubMedCrossRefGoogle Scholar
  8. Briggs DJ, Nagarajan T, Rupprecht CE (2013) Rabies vaccines. In: Jackson A (eds) Rabies, 3rd edn. Elsevier Inc, pp 497–526Google Scholar
  9. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259PubMedCentralPubMedGoogle Scholar
  10. Ceccaldi PE, Fayet J, Conzelmann KK, Tsiang H (1998) Infection characteristics of rabies virus variants with deletion or insertion in the pseudogene sequence. J Neurovirol 4:115–119PubMedCrossRefGoogle Scholar
  11. Chai Q, He WQ, Zhou M, Lu H, Fu ZF (2014) Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88:4698–4710PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chare ER, Gould EA, Holmes EC (2003) Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84:2691–2703PubMedCrossRefGoogle Scholar
  13. Chenik M, Chebli K, Blondel D (1995) Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol 69:707–712PubMedCentralPubMedGoogle Scholar
  14. Conzelmann K-K (2013) Reverse genetics of Mononegavirales: The rabies virus paradigm. In: Nagai Y (eds) Sendai virus vector: Advantages and applications, 1st edn. Springer, pp 1–20Google Scholar
  15. Cox JH, Dietzschold B, Schneider LG (1977) Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun 16:754–759PubMedCentralPubMedGoogle Scholar
  16. Dietzschold B, Schnell M, Koprowski H (2005) Pathogenesis of rabies. Curr Top Microbiol Immunol 292:45–56PubMedGoogle Scholar
  17. Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983) Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A 80:70–74PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dudek T, Knipe DM (2006) Replication-defective viruses as vaccines and vaccine vectors. Virology 344:230–239PubMedCrossRefGoogle Scholar
  19. Faber M, Bette M, Preuss MA, Pulmanausahakul R, Rehnelt J, Schnell MJ, Dietzschold B, Weihe E (2005a) Overexpression of tumor necrosis factor alpha by a recombinant rabies virus attenuates replication in neurons and prevents lethal infection in mice. J Virol 79:15405–15416PubMedCentralPubMedCrossRefGoogle Scholar
  20. Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, Schnell MJ (2005b) A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 79:14141–14148PubMedCentralPubMedCrossRefGoogle Scholar
  21. Faber M, Li J, Kean RB, Hooper DC, Alugupalli KR, Dietzschold B (2009) Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A 106:11300–11305PubMedCentralPubMedCrossRefGoogle Scholar
  22. Faber M, Pulmanausahakul R, Hodawadekar SS, Spitsin S, McGettigan JP, Schnell MJ, Dietzschold B (2002) Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol 76:3374–3381PubMedCentralPubMedCrossRefGoogle Scholar
  23. Faul EJ, Wanjalla CN, McGettigan JP, Schnell MJ (2008) Interferon-beta expressed by a rabies virus-based HIV-1 vaccine vector serves as a molecular adjuvant and decreases pathogenicity. Virology 382:226–238PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fensterl V, Sen GC (2009) Interferons and viral infections. Biofactors 35:14–20PubMedCrossRefGoogle Scholar
  25. Finke S, Conzelmann KK (2003) Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 77:12074–12082PubMedCentralPubMedCrossRefGoogle Scholar
  26. Finke S, Conzelmann KK (2005) Recombinant Rhabdoviruses-Vectors for vaccine development and gene therapy. Curr Top Microbiol Immunol 292:165–200PubMedGoogle Scholar
  27. Finke S, Mueller-Waldeck R, Conzelmann KK (2003) Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84:1613–1621PubMedCrossRefGoogle Scholar
  28. Flanagan EB, Ball LA, Wertz GW (2000) Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 74:7895–7902PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, García-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682PubMedCentralPubMedGoogle Scholar
  30. Han GZ, Worobey M (2011) Homologous recombination in negative sense RNA viruses. Viruses 3:1358–1373PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hicks DJ, Fooks AR, Johnson N (2012) Developments in rabies vaccines. Clin Exp Immunol 169:199–204PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hosking MP, Lane TE (2010) The role of chemokines during viral infection of the CNS. PLoS Pathog 6:e1000937PubMedCentralPubMedCrossRefGoogle Scholar
  34. Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107:229–236PubMedCrossRefGoogle Scholar
  35. Ito H, Minamoto N, Watanabe T, Goto H, Rong LT, Sugiyama M, Kinjo T, Mannen K, Mifune K, Konobe T, Yoshida I, Takamizawa A (1994) A unique mutation of glycoprotein gene of the attenuated RC-HL strain of rabies virus, a seed virus used for production of animal vaccine in Japan. Microbiol Immunol 38:479–482PubMedCrossRefGoogle Scholar
  36. Ito N, Sugiyama M, Yamada K, Shimizu K, Takayama-Ito M, Hosokawa J, Minamoto N (2005) Characterization of M gene-deficient rabies virus with advantages of effective immunization and safety as a vaccine strain. Microbiol Immunol 49:971–979PubMedCrossRefGoogle Scholar
  37. Ito Y, Ito N, Saito S, Masatani T, Nakagawa K, Atoji Y, Sugiyama M (2010) Amino acid substitutions at positions 242, 255 and 268 in rabies virus glycoprotein affect spread of viral infection. Microbiol Immunol 54:89–97PubMedCrossRefGoogle Scholar
  38. Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23:477–484PubMedCrossRefGoogle Scholar
  39. Jacob Y, Badrane H, Ceccaldi PE, Tordo N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217–10222PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jacobsen H, Mestan J, Mittnacht S, Dieffenbach CW (1989) Beta interferon subtype 1 induction by tumor necrosis factor. Mol Biol Cell 9:3037–3042Google Scholar
  41. Kotenko SV (2011) IFN-λs. Curr Opin Immunol 23:583–590PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kuang Y, Lackay SN, Zhao L, Fu ZF (2009) Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res 144:18–26PubMedCentralPubMedCrossRefGoogle Scholar
  43. Langevin C, Jaaro H, Bressanelli S, Fainzilber M, Tuffereau C (2002) Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem 277:37655–37662PubMedCrossRefGoogle Scholar
  44. Le Mercier P, Jacob Y, Tanner K, Tordo N (2002) A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J Virol 76:2024–2027PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lentz TL, Wilson PT, Hawrot E, Speicher DW (1984) Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science 226:847–848PubMedCrossRefGoogle Scholar
  46. Lin RJ, Liao CL, Lin E, Lin YL (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78:9285–9294PubMedCentralPubMedCrossRefGoogle Scholar
  47. Liu W, Liu Y, Liu J, Zhai J, Xie Y (2011) Evidence for inter- and intra-clade recombinations in rabies virus. Infect Genet Evol 11:1906–1912PubMedCrossRefGoogle Scholar
  48. Marschalek A, Finke S, Schwemmle M, Mayer D, Heimrich B, Stitz L, Conzelmann KK (2009) Attenuation of rabies virus replication and virulence by picornavirus internal ribosome entry site elements. J Virol 83:1911–1919PubMedCentralPubMedCrossRefGoogle Scholar
  49. McGettigan JP, Pomerantz RJ, Siler CA, McKenna PM, Foley HD, Dietzschold B, Schnell MJ (2003) Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic. J Virol 77:237–244PubMedCentralPubMedCrossRefGoogle Scholar
  50. Mebatsion T (2001) Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J Virol 75:11496–11502PubMedCentralPubMedCrossRefGoogle Scholar
  51. Mebatsion T, Konig M, Conzelmann KK (1996) Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84:941–951PubMedCrossRefGoogle Scholar
  52. Mebatsion T, Weiland F, Conzelmann KK (1999) Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73:242–250PubMedCentralPubMedGoogle Scholar
  53. Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Möller A, Jacobsen H, Kirchner H (1986) Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323:816–819PubMedCrossRefGoogle Scholar
  54. Morimoto K, Foley HD, McGettigan JP, Schnell MJ, Dietzschold B (2000) Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 6:373–381PubMedCrossRefGoogle Scholar
  55. Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B (1998) Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci U S A 95:3152–3156PubMedCentralPubMedCrossRefGoogle Scholar
  56. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518PubMedCentralPubMedGoogle Scholar
  57. Morimoto K, McGettigan JP, Foley HD, Hooper DC, Dietzschold B, Schnell MJ (2001) Genetic engineering of live rabies vaccines. Vaccine 19:3543–3551PubMedCrossRefGoogle Scholar
  58. Morimoto K, Shoji Y, Inoue S (2005) Characterization of P gene-deficient rabies virus: propagation, pathogenicity and antigenicity. Virus Res 111:61–67PubMedCrossRefGoogle Scholar
  59. Navratil V, de Chassey B, Meyniel L, Pradezynski F, André P, Rabourdin-Combe C, Lotteau V (2010) System-level comparison of protein-protein interactions between viruses and the human type I interferon system network. J Proteome Res 9:3527–3536PubMedCrossRefGoogle Scholar
  60. Nel LH (2005) Vaccines for lyssaviruses other than rabies. Expert Rev Vaccines 4:533–540PubMedCrossRefGoogle Scholar
  61. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96:9345–9350PubMedCentralPubMedCrossRefGoogle Scholar
  62. Niu X, Wang H, Fu ZF (2011) Role of chemokines in rabies pathogenesis and protection. Adv Virus Res 79:73–89PubMedCrossRefGoogle Scholar
  63. PeKosz A, He B, Lamb RA (1999) Reverse genetics of negative-strand RNA viruses: closing the circle. Proc Natl Acad Sci U S A 96:8804–8806PubMedCentralPubMedCrossRefGoogle Scholar
  64. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386PubMedCrossRefGoogle Scholar
  65. Pulmanausahakul R, Faber M, Morimoto K, Spitsin S, Weihe E, Hooper DC, Schnell MJ, Dietzschold B (2001) Overexpression of cytochrome C by a recombinant rabies virus attenuates pathogenicity and enhances antiviral immunity. J Virol 75:10800–10807PubMedCentralPubMedCrossRefGoogle Scholar
  66. Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216PubMedCentralPubMedCrossRefGoogle Scholar
  67. Roberts A, Buonocore L, Price R, Forman J, Rose JK (1999) Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 73:3723–3732PubMedCentralPubMedGoogle Scholar
  68. Rupprecht CE, Hanlon CA, Hemachudha T (2002) Rabies re-examined. Lancet Infect Dis 2:327–343PubMedCrossRefGoogle Scholar
  69. Rupprecht CE, Plotkin SA (2013) Rabies vaccines. In Plotkin SA, Orenstein WA, Offit PA (eds) Vaccines, 6th edn. Elsevier Inc, pp 646–668Google Scholar
  70. Sato G, Kobayashi Y, Motizuki N, Hirano S, Itou T, Cunha EM, Ito FH, Sakai T (2009) A unique substitution at position 333 on the glycoprotein of rabies virus street strains isolated from non-hematophagous bats in Brazil. Virus Genes 38:74–79PubMedCrossRefGoogle Scholar
  71. Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol 8:51–61PubMedGoogle Scholar
  72. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203PubMedCentralPubMedGoogle Scholar
  73. Seif I, Coulon P, Rollin PE, Flamand A (1985) Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol 53:926–934PubMedCentralPubMedGoogle Scholar
  74. Seo SH, Webster RG (2002) Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol 76:1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  75. Shoji Y, Inoue S, Nakamichi K, Kurane I, Sakai T, Morimoto K (2004) Generation and characterization of P gene-deficient rabies virus. Virology 318:295–305PubMedCrossRefGoogle Scholar
  76. Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N (2006) Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res 115:169–175PubMedCrossRefGoogle Scholar
  77. Tan GS, Preuss MA, Williams JC, Schnell MJ (2007) The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proc Natl Acad Sci U S A 104:7229–7234PubMedCentralPubMedCrossRefGoogle Scholar
  78. Taniguchi T, Palmieri M, Weissmann C (1978) Qβ DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 274:223–228PubMedCrossRefGoogle Scholar
  79. Tao L, Ge J, Wang X, Wen Z, Zhai H, Hua T, Zhao B, Kong D, Yang C, Bu Z (2011) Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virol J 8:454PubMedCentralPubMedCrossRefGoogle Scholar
  80. Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190PubMedCentralPubMedGoogle Scholar
  81. Tuffereau C, Benejean J, Blondel D, Kieffer B, Flamand A (1998) Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J 17:7250–7259PubMedCentralPubMedCrossRefGoogle Scholar
  82. Ubogu EE, Cossoy MB, Ransohoff RM (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27:48–55PubMedCrossRefGoogle Scholar
  83. Villarreal LP, Breindl M, Holland JJ (1976) Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry 15:1663–1667PubMedCrossRefGoogle Scholar
  84. Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR (2011) Rhabdovirus accessory genes. Virus Res 162:110–125PubMedCrossRefGoogle Scholar
  85. Wang H, Zhang G, Wen Y, Yang S, Xia X, Fu ZF (2011) Intracerebral administration of recombinant rabies virus expressing GM-CSF prevents the development of rabies after infection with street virus. PLoS ONE 6:e25414PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79:12554–12565PubMedCentralPubMedCrossRefGoogle Scholar
  87. Wertz GW, Moudy R, Ball LA (2002) Adding genes to the RNA genome of vesicular stomatitis virus: positional effects on stability of expression. J Virol 76:7642–7650PubMedCentralPubMedCrossRefGoogle Scholar
  88. Wertz GW, Perepelitsa VP, Ball LA (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci U S A 95:3501–3506PubMedCentralPubMedCrossRefGoogle Scholar
  89. Whelan SP, Barr JN, Wertz GW (2004) Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 283:61–119PubMedGoogle Scholar
  90. Wiktor TJ, Gyorgy E, Schlumberger D, Sokol F, Koprowski H (1973) Antigenic properties of rabies virus components. J Immunol 110:269–276PubMedGoogle Scholar
  91. Wirblich C, Tan GS, Papaneri A, Godlewski PJ, Orenstein JM, Harty RN, Schnell MJ (2008) PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J Virol 82:9730–9738PubMedCentralPubMedCrossRefGoogle Scholar
  92. Wu X, Smith TG, Rupprecht CE (2011) From brain passage to cell adaptation: the road of human rabies vaccine development. Expert Rev Vaccines 10:1597–1608PubMedCrossRefGoogle Scholar
  93. Yan X, Prosniak M, Curtis MT, Weiss ML, Faber M, Dietzschold B, Fu ZF (2001) Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J Neurovirol 7:518–527PubMedCrossRefGoogle Scholar
  94. Yang C, Jackson AC (1992) Basis of neurovirulence of avirulent rabies virus variant Av01 with stereotaxic brain inoculation in mice. J Gen Virol 73:895–900PubMedCrossRefGoogle Scholar
  95. Yang J, Hooper DC, Wunner WH, Koprowski H, Dietzschold B, Fu ZF (1998) The specificity of rabies virus RNA encapsidation by nucleoprotein. Virology 242:107–117PubMedCrossRefGoogle Scholar
  96. Zhang G, Wang H, Mahmood F, Fu ZF (2013) Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Vet Microbiol 162:601–613PubMedCentralPubMedCrossRefGoogle Scholar
  97. Zhang YZ, Xiong CL, Xiao DL, Jiang RJ, Wang ZX, Zhang LZ, Fu ZF (2005) Human rabies in China. Emerg Infect Dis 11:1983–1984PubMedCentralPubMedCrossRefGoogle Scholar
  98. Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF (2009) The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol 83:11808–11818PubMedCentralPubMedCrossRefGoogle Scholar
  99. Zhao W, Zhang ZY, Zsak L, Yu QZ (2014) P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. doi:  10.1099/vir.0.068437-0
  100. Zhu JH, Wang J, Cai B, Zhao W, Zhu Y, Chao R, Chen L, Xue H, Ying BL, Li CP, Hu QL, Sha J, Esposito JJ (1996) Immunogenicity and relative attenuation of different vaccinia-rabies virus recombinants. Arch Virol 141:1055–1065PubMedCrossRefGoogle Scholar
  101. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2015

Authors and Affiliations

  • Shimao Zhu
    • 1
  • Hui Li
    • 1
  • Chunhua Wang
    • 1
  • Farui Luo
    • 1
  • Caiping Guo
    • 1
  1. 1.Shenzhen Weiguang Biological Products Co., Ltd.ShenzhenChina

Personalised recommendations