Skip to main content

Advertisement

Log in

Role of Bruton’s tyrosine kinase inhibitors in HIV-1-infected cells

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton’s tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60–120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • (UNAIDS Report 2013). UNAIDS Report on the Global AIDS Epidemic 2013 UNAIDS Corporate Publication http://www.unaids.org/sites/default/files/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf.

  • Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, Kolibaba KS, Furman RR, Rodriguez S, Chang BY, Sukbuntherng J, Izumi R, Hamdy A, Hedrick E, Fowler NH (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 31:88–94

    Article  CAS  PubMed  Google Scholar 

  • Bagasra O (2006) A unified concept of HIV latency. Expert Opin Biol Ther 6:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH (2000) Bruton’s tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med 191:1735–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL (2005) Tec family kinases in T lymphocyte development and function. Annu Rev Immunol 23:549–600

    Article  CAS  PubMed  Google Scholar 

  • Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F (2006) Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 80:3189–3204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berro R, de la Fuente C, Klase Z, Kehn K, Parvin L, Pumfery A, Agbottah E, Vertes A, Nekhai S, Kashanchi F (2007) Identifying the membrane proteome of HIV-1 latently infected cells. J Biol Chem 282:8207–8218

    Article  CAS  PubMed  Google Scholar 

  • Carmi C, Mor M, Petronini PG, Alfieri RR (2012) Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol

  • Carter CC, Onafuwa-Nuga A, McNamara LA, Jt R, Bixby D, Savona MR, Collins KL (2010) HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med 16:446–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castagna A, Biswas P, Beretta A, Lazzarin A (2005) The appealing story of HIV entry inhibitors: from discovery of biological mechanisms to drug development. Drugs 65:879–904

    Article  CAS  PubMed  Google Scholar 

  • Chun TW, Davey RT Jr, Engel D, Lane HC, Fauci AS (1999) Re-emergence of HIV after stopping therapy. Nature 401:874–875

    Article  CAS  PubMed  Google Scholar 

  • Clark E, Santiago F, Deng L, Chong S, de La Fuente C, Wang L, Fu P, Stein D, Denny T, Lanka V, Mozafari F, Okamoto T, Kashanchi F (2000) Loss of G(1)/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1. J Virol 74:5040–5052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clouse KA, Powell D, Washington I, Poli G, Strebel K, Farrar W, Barstad P, Kovacs J, Fauci AS, Folks TM (1989) Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol 142:431–438

    CAS  PubMed  Google Scholar 

  • Cobos-Jimenez V, Booiman T, Hamann J, Kootstra NA (2011) Macrophages and HIV-1. Curr Opin HIV AIDS 6:385–390

    Article  PubMed  Google Scholar 

  • Cohen P (2005) Come out, come out. A recent study suggests a novel treatment might flush out latent copies of HIV hiding in the body—and re-ignites discussion over the challenges of eradicating HIV infection. IAVI Rep 9(1):6–9

    Google Scholar 

  • Contreras CM, Halcomb KE, Randle L, Hinman RM, Gutierrez T, Clarke SH, Satterthwaite AB (2007) Btk regulates multiple stages in the development and survival of B-1 cells. Mol Immunol 44:2719–2728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Weers M, Verschuren MC, Kraakman ME, Mensink RG, Schuurman RK, van Dongen JJ, Hendriks RW (1993) The Bruton’s tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages. Eur J Immunol 23:3109–3114

    Article  PubMed  Google Scholar 

  • Douhan Iii J, Miyashiro JS, Zhou X, Cole DC, Wu PW, Collins M, Dunussi-Joannopoulos K (2007) A FLIPR-based assay to assess potency and selectivity of inhibitors of the TEC family kinases Btk and Itk. Assay Drug Dev Technol

  • Evans VA, Kumar N, Filali A, Procopio FA, Yegorov O, Goulet JP, Saleh S, Haddad EK, da Fonseca PC, Ellenberg PC, Sekaly RP, Cameron PU, Lewin SR (2013) Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog 9:e1003799

    Article  PubMed Central  PubMed  Google Scholar 

  • Fluckiger AC, Li Z, Kato RM, Wahl MI, Ochs HD, Longnecker R, Kinet JP, Witte ON, Scharenberg AM, Rawlings DJ (1998) Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 17:1973–1985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS (1987) Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800–802

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Satterthwaite AB, Witte ON (2000) Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13:1–3

    Article  CAS  PubMed  Google Scholar 

  • Gougeon ML, Melki MT, Saidi H (2012) HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells. Cell Death Differ 19:96–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guendel I, Iordanskiy S, Van Duyne R, Kehn-Hall K, Saifuddin M, Das R, Jaworski E, Sampey GC, Senina S, Shultz L, Narayanan A, Chen H, Lepene B, Zeng C, Kashanchi F (2013) Novel neuroprotective GSK-3beta inhibitor restricts Tat-mediated HIV-1 replication. J Virol

  • Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ (2000) Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13:243–253

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MO, Hussain A, Mohammad DK, Mohamed AJ, Nguyen V, Metalnikov P, Colwill K, Pawson T, Smith CI, Nore BF (2012) Regulation of nucleocytoplasmic shuttling of Bruton’s tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 32:2440–2453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison C (2012) Trial watch: BTK inhibitor shows positive results in B cell malignancies. Nat Rev Drug Discov 11:96

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Kikuchi Y, Nisitani S, Yamaguchi A, Satoh A, Ito T, Iba H, Takatsu K (2004) Bruton’s tyrosine kinase (Btk) enhances transcriptional co-activation activity of BAM11, a Btk-associated molecule of a subunit of SWI/SNF complexes. Int Immunol 16:747–757

    Article  CAS  PubMed  Google Scholar 

  • Horwood NJ, Mahon T, McDaid JP, Campbell J, Mano H, Brennan FM, Webster D, Foxwell BM (2003) Bruton’s tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production. J Exp Med 197:1603–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huppertz B, Frank HG, Kaufmann P (1999) The apoptosis cascade—morphological and immunohistochemical methods for its visualization. Anat Embryol (Berl) 200:1–18

    Article  CAS  Google Scholar 

  • Iordanskaia T, Nawshad A (2011) Mechanisms of transforming growth factor beta induced cell cycle arrest in palate development. J Cell Physiol 226:1415–1424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Islam TC, Smith CI (2000) The cellular phenotype conditions Btk for cell survival or apoptosis signaling. Immunol Rev 178:49–63

    Article  CAS  PubMed  Google Scholar 

  • Jaworski E, Saifuddin M, Sampey G, Shafagati N, Van Duyne R, Iordanskiy S, Kehn-Hall K, Liotta L, Petricoin E 3rd, Young M, Lepene B, Kashanchi F (2014) The use of Nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS One 9:e96778

    Article  PubMed Central  PubMed  Google Scholar 

  • Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22:1868–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, Steiner JP, Nath A, Kutsch O, Kashanchi F (2011) Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology 415:56–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hirano M, Seto M, Takatsu K (2000) Identification and characterization of a molecule, BAM11, that associates with the pleckstrin homology domain of mouse Btk. Int Immunol 12:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki T (1997) Molecular mechanisms in B cell antigen receptor signaling. Curr Opin Immunol 9:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki T (2000) Functional dissection of BCR signaling pathways. Curr Opin Immunol 12:276–281

    Article  CAS  PubMed  Google Scholar 

  • Lederman MM, Penn-Nicholson A, Cho M, Mosier D (2006) Biology of CCR5 and its role in HIV infection and treatment. JAMA 296:815–826

    Article  CAS  PubMed  Google Scholar 

  • Lindvall JM, Blomberg KE, Valiaho J, Vargas L, Heinonen JE, Berglof A, Mohamed AJ, Nore BF, Vihinen M, Smith CI (2005) Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 203:200–215

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Miller H, Hui KL, Grooman B, Bolland S, Upadhyaya A, Song W (2011) A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol 187:230–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P (2003) Monoclonal antibody therapeutics and apoptosis. Oncogene 22:9097–9106

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M, Uckun FM (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 274:9587–9599

    Article  CAS  PubMed  Google Scholar 

  • Mano H (1999) Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev 10:267–280

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Mikami Y, Ohtani M, Fujiwara M, Hirata Y, Minowa A, Terauchi Y, Kadowaki T, Koyasu S (2009) Critical role of class IA PI3K for c-Rel expression in B lymphocytes. Blood 113:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AJ, Nore BF, Christensson B, Smith CI (1999) Signalling of Bruton’s tyrosine kinase, Btk. Scand J Immunol 49:113–118

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI (2000) Nucleocytoplasmic shuttling of Bruton’s tyrosine kinase. J Biol Chem 275:40614–40619

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228:58–73

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B, Meijer L, Caputi M, Nekhai S, Kashanchi F (2012) Use of ATP analogs to inhibit HIV-1 transcription. Virology 432:219–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novina CD, Kumar S, Bajpai U, Cheriyath V, Zhang K, Pillai S, Wortis HH, Roy AL (1999) Regulation of nuclear localization and transcriptional activity of TFII-I by Bruton’s tyrosine kinase. Mol Cell Biol 19:5014–5024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez VL, Rowe T, Justement JS, Butera ST, June CH, Folks TM (1991) An HIV-1-infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J Immunol 147:3145–3148

    CAS  PubMed  Google Scholar 

  • Petro JB, Rahman SM, Ballard DW, Khan WN (2000) Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med 191:1745–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popova TG, Turell MJ, Espina V, Kehn-Hall K, Kidd J, Narayanan A, Liotta L, Petricoin EF 3rd, Kashanchi F, Bailey C, Popov SG (2010) Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells. PLoS One 5:e13805

    Article  PubMed Central  PubMed  Google Scholar 

  • Prins KC, Vasiliver-Shamis G, Cammer M, Depoil D, Dustin ML, Hioe CE (2012) Imaging of HIV-1 envelope-induced virological synapse and signaling on synthetic lipid bilayers. J Vis Exp

  • Rawlings DJ, Witte ON (1994) Bruton’s tyrosine kinase is a key regulator in B-cell development. Immunol Rev 138:105–119

    Article  CAS  PubMed  Google Scholar 

  • Readinger JA, Schiralli GM, Jiang JK, Thomas CJ, August A, Henderson AJ, Schwartzberg PL (2008) Selective targeting of ITK blocks multiple steps of HIV replication. Proc Natl Acad Sci U S A 105:6684–6689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ (2009) The challenge of finding a cure for HIV infection. Science 323:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Robak T, Robak E (2012) Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Exp Opin Investig Drugs 21:921–947

    Article  CAS  Google Scholar 

  • Sadaie MR, Tschachler E, Valerie K, Rosenberg M, Felber BK, Pavlakis GN, Klotman ME, Wong-Staal F (1990) Activation of tat-defective human immunodeficiency virus by ultraviolet light. New Biol 2:479–486

    CAS  PubMed  Google Scholar 

  • Saito K, Tolias KF, Saci A, Koon HB, Humphries LA, Scharenberg A, Rawlings DJ, Kinet JP, Carpenter CL (2003) BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19:669–678

    Article  CAS  PubMed  Google Scholar 

  • Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CI, Driscoll PC, Waterfield MD, Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J 15:6241–6250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Satterthwaite AB, Li Z, Witte ON (1998) Btk function in B cell development and response. Semin Immunol 10:309–316

    Article  CAS  PubMed  Google Scholar 

  • Scharenberg AM, Kinet JP (1998) PtdIns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 94:5–8

    Article  CAS  PubMed  Google Scholar 

  • Schiralli Lester GM, Akiyama H, Evans E, Singh J, Gummuluru S, Henderson AJ (2013) Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology 436:235–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt C, Kim D, Ippolito GC, Naqvi HR, Probst L, Mathur S, Rosas-Acosta G, Wilson VG, Oldham AL, Poenie M, Webb CF, Tucker PW (2009) Signalling of the BCR is regulated by a lipid rafts-localised transcription factor, Bright. EMBO J 28:711–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinners NP, Carlesso G, Castro I, Hoek KL, Corn RA, Woodland RT, Scott ML, Wang D, Khan WN (2007) Bruton’s tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J Immunol 179:3872–3880

    Article  CAS  PubMed  Google Scholar 

  • Smith CI, Baskin B, Humire-Greiff P, Zhou JN, Olsson PG, Maniar HS, Kjellen P, Lambris JD, Christensson B, Hammarstrom L et al (1994a) Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 152:557–565

    CAS  PubMed  Google Scholar 

  • Smith CI, Islam KB, Vorechovsky I, Olerup O, Wallin E, Rabbani H, Baskin B, Hammarstrom L (1994b) X-linked agammaglobulinemia and other immunoglobulin deficiencies. Immunol Rev 138:159–183

    Article  CAS  PubMed  Google Scholar 

  • Steff AM, Fortin M, Philippoussis F, Lesage S, Arguin C, Johnson P, Hugo P (2003) A cell death pathway induced by antibody-mediated cross-linking of CD45 on lymphocytes. Crit Rev Immunol 23:421–440

    Article  CAS  PubMed  Google Scholar 

  • Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–290

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM (1998) Bruton’s tyrosine kinase (BTK) as a dual-function regulator of apoptosis. Biochem Pharmacol 56:683–691

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM (2007) Chemosensitizing anti-cancer activity of LFM-A13, a leflunomide metabolite analog targeting polo-like kinases. Cell Cycle 6:3021–3026

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM, Vassilev A, Bartell S, Zheng Y, Mahajan S, Tibbles HE (2003) The anti-leukemic Bruton’s tyrosine kinase inhibitor alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl) propenamide (LFM-A13) prevents fatal thromboembolism. Leuk Lymphoma 44:1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Van Duyne R, Guendel I, Narayanan A, Gregg E, Shafagati N, Tyagi M, Easley R, Klase Z, Nekhai S, Kehn-Hall K, Kashanchi F (2011) Varying modulation of HIV-1 LTR activity by Baf complexes. J Mol Biol 411:581–596

    Article  PubMed Central  PubMed  Google Scholar 

  • Vargas L, Nore BF, Berglof A, Heinonen JE, Mattsson PT, Smith CI, Mohamed AJ (2002) Functional interaction of caveolin-1 with Bruton’s tyrosine kinase and Bmx. J Biol Chem 277:9351–9357

    Article  CAS  PubMed  Google Scholar 

  • Varnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274:10983–10989

    Article  CAS  PubMed  Google Scholar 

  • Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–233

    Article  CAS  PubMed  Google Scholar 

  • Webb CF, Nixon N, Ayers N, Evetts S, Paulin Y (2000a) Expression of the transcription factor bright in human tonsil germinal centers and description of a new bright isoform. Faseb J 14:A1036

    Google Scholar 

  • Webb CF, Yamashita Y, Ayers N, Evetts S, Paulin Y, Conley ME, Smith EA (2000b) The transcription factor Bright associates with Bruton’s tyrosine kinase, the defective protein in immunodeficiency disease. J Immunol 165:6956–6965

    Article  CAS  PubMed  Google Scholar 

  • Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR, Ho YS, Saksena NK, Hoy J, Crowe SM, Cameron PU, Lewin SR (2010) Both CD31(+) and CD31(−) naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis 202:1738–1748

    Article  PubMed  Google Scholar 

  • Winer ES, Ingham RR, Castillo JJ (2012) PCI-32765: a novel Bruton’s tyrosine kinase inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 21:355–361

    Article  CAS  PubMed  Google Scholar 

  • Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin EF 3rd (2006) Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3:256–268

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A 94:604–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu L, Mohamed AJ, Simonson OE, Vargas L, Blomberg KE, Bjorkstrand B, Arteaga HJ, Nore BF, Smith CI (2008) Proteasome-dependent autoregulation of Bruton tyrosine kinase (Btk) promoter via NF-kappaB. Blood 111:4617–4626

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady JN, Kumar A (2004) Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J Virol 78:13522–13533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Kashanchi Lab for experiments and assistance with the manuscript, and the NIH AIDS Research and Reference Reagent Program for the contribution of the important reagents. This work was supported by National Institutes of Health grant AI070740, AI043894, AI11340, and AI114490 to FK and a grant from Virginia’s Commonwealth Health Research Board to KK. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatah Kashanchi.

Additional information

Irene Guendel and Sergey Iordanskiy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guendel, I., Iordanskiy, S., Sampey, G.C. et al. Role of Bruton’s tyrosine kinase inhibitors in HIV-1-infected cells. J. Neurovirol. 21, 257–275 (2015). https://doi.org/10.1007/s13365-015-0323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0323-5

Keywords

Navigation