Skip to main content

Advertisement

Log in

Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The reasons for persistent brain dysfunction in chronically HIV-infected persons on stable combined antiretroviral therapies (CART) remain unclear. Host and viral factors along with their interactions were examined in 260 HIV-infected subjects who underwent magnetic resonance spectroscopy (MRS). Metabolite concentrations (NAA/Cr, Cho/Cr, MI/Cr, and Glx/Cr) were measured in the basal ganglia, the frontal white matter, and gray matter, and the best predictive models were selected using a bootstrap-enhanced Akaike information criterion (AIC). Depending on the metabolite and brain region, age, race, HIV RNA concentration, ADC stage, duration of HIV infection, nadir CD4, and/or their interactions were predictive of metabolite concentrations, particularly the basal ganglia NAA/Cr and the mid-frontal NAA/Cr and Glx/Cr, whereas current CD4 and the CPE index rarely or did not predict these changes. These results show for the first time that host and viral factors related to both current and past HIV status contribute to persisting cerebral metabolite abnormalities and provide a framework for further understanding neurological injury in the setting of chronic and stable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Ances BM, Bhatt A, Vaida F, Rosario D, Alexander T, Marquie-Beck J et al (2009) Role of metabolic syndrome components in human immunodeficiency virus-associated stroke. J Neurovirol 15(3):249–256, PMCID: 2891579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ances B, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S et al (2010) HIV and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Austin P, Tu J (2004) Bootstrap methods for developing predictive models. Am Stat 58:131–137

    Article  Google Scholar 

  • Becker JT, Lopez OL, Dew MA, Aizenstein HJ (2004) Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS 18:11–18

    Article  Google Scholar 

  • Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38(4):563–570

    Article  CAS  PubMed  Google Scholar 

  • Caldwell J, Cohen, RA, Gongvatana, A, Tashima, K, Navia, B. Neural dysregulation during a working memory task in human immunodeficiency virus-seropositive and hepatitis C coinfected individuals. in press.

  • Cardenas VA, Meyerhoff DJ, Studholme C et al (2009) Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 15(4):324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, Corral I (2014) Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol 1–8

  • Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E (2002) Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage 17:1638–48.20

    Article  PubMed  Google Scholar 

  • Chang L, Holt JL, Yakupov R, Jiang CS, Ernst T (2013) Lower cognitive reserve in the aging human immunodeficiency virus-infected brain. Neurobiol Aging 34(4):1240–1253

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23:1336–1347

    Article  CAS  PubMed  Google Scholar 

  • Cohen RA, Harezlak J, Schifitto G et al (2010a) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen RA, Harezlak J, Gongvatana A et al (2010b) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16(6):435–444

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR et al (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42:679–688

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chang L, Jovicich J, Ames N, Arnold S (2002) Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 59(9):1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Yakupov R, Nakama H et al (2009) Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol 65(3):316–325

    Article  PubMed Central  PubMed  Google Scholar 

  • Foley JM, Ettenhofer ML, Kim MS, Behdin N, Castellon SA, Hinkin CH (2012) Cognitive reserve as a protective factor in older HIV-positive patients at risk for cognitive decline. Appl Neuropsychol Adult 19(1):16–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammer SM, Saag MS, Schechter M et al (2006) Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA 296(7):827–843

    Article  CAS  PubMed  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in the era of highly active antiretroviral treatment. AIDS 25(5):625–633

    Article  CAS  PubMed  Google Scholar 

  • Heaton R, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorder persists in the era of potent anti-retroviral therapy. Neurology 75(23):2087–2096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature and predictors. J Neurovirol 17(1):3–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heaton RK, Miller SW, Taylor MJ, Grant I (2004) Revised comprehensive norms for an expanded Halstead-Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources, Inc.

  • Karp A, Kareholt I, Qui C, Bellander T, Winblad B, Fratiglioni L (2004) Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am J Epidemiol 159:175–183

    Article  PubMed  Google Scholar 

  • Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96(14):8212–8216, PMCID: 22214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee PL, Yiannoutsos CT, Ernst T et al (2003) A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging 17(6):625–633

    Article  PubMed  Google Scholar 

  • Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70

    Article  PubMed Central  PubMed  Google Scholar 

  • Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ et al (2011) Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol 17(1):63–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Letendre S, Zheng J, Yiannoutsos C, Lopez A, Ellis R, Marquie-Beck J et al (2004) Chemokines correlate with cerebral metabolites on magnetic resonance spectroscopy: a substudy of ACTG 301 and 700. 11th Conference in Retroviruses and Opportunistic Infections, San Francisco

    Google Scholar 

  • Lopez-Villegas D, Lenkinski RE, Frank I (1997) Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94(18):9854–9859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manly JJ, Touradji P, Tang MX, Stern Y (2003) Literacy and memory decline among ethnically diverse elders. J Clin Exp Neuropsychol 25(5):680–690

    Article  PubMed  Google Scholar 

  • McArthur JC, McClernon DR, Cronin MF et al (1997) Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42(5):689–698

    Article  CAS  PubMed  Google Scholar 

  • Meyerhoff DJ, MacKay S, Poole N, Dillon WP, Weiner MW, Fein G (1994) Acetylaspartate reductions measured by 1H MRSI in cognitively impaired HIV-seropositive individuals. Magn Reson Imaging 12:653–659

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MA, Barker PB, Skolasky RL et al (2010) Brain metabolism and cognitive impairment in HIV infection: a 3T magnetic resonance spectroscopy study. Magn Reson Imaging 28(9):1251–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan EE, Woods SP, Smith C, Weber E, Scott JC, Grant I (2012) Lower cognitive reserve among individuals with syndromic HIV-associated neurocognitive disorders (HAND). AIDS Behav 16(8):2279–2285

    Article  PubMed Central  PubMed  Google Scholar 

  • Navia BA, Cho ES, Petito CK, Price RW (1986a) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535

    Article  CAS  PubMed  Google Scholar 

  • Navia BA, Harezlak J, Schiffito G, et al (2011) Longitudinal study of neurological injury in HIV-infected subjects on stable antiretroviral therapies: the HIV Neuroimaging Consortium Cohort Study. Conference on Retroviral Infections and Opportunistic Infections, March

  • Navia BA, Jordan BD, Price RW (1986b) The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6):517–524

    Article  CAS  PubMed  Google Scholar 

  • Navia BA, Rostasy K (2005) The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 8:3–24

    Article  CAS  PubMed  Google Scholar 

  • Palella FJ Jr, Delaney KM, Moorman AC et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338(13):853–860

    Article  PubMed  Google Scholar 

  • Paul RH, Yiannoutsos CT, Miller EN et al (2007) Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci 19:283–292

    Article  PubMed  Google Scholar 

  • Perry W, Hilsabeck RC, Hassanein TI (2008) Cognitive dysfunction in chronic hepatitis C: a review. Dig Dis Sci 53(2):307–321

    Article  PubMed  Google Scholar 

  • Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158(5):1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Backman L, Winblad B, Aguero-Torres H, Fratiglioni L (2001) The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Arch Neurol 58:2034–2039

    Article  CAS  PubMed  Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD et al (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921

    Article  PubMed  Google Scholar 

  • Rostasy K, Monti L, Yiannoutsos C et al (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 46(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Sacktor N, McDermott MP, Marder K et al (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8(2):136–142

    Article  PubMed  Google Scholar 

  • Salvan AM, Vion-Dury J, Confort-Gouny S, Nicoli F, Lamoureux S, Cozzone PJ (1997) Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy. AIDS Res Hum Retroviruses 13:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Satz P, Morgenstern H, Miller EN et al (1993) Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS). J Acquir Immune Defic Syndr 6(5):503–511

    Article  CAS  PubMed  Google Scholar 

  • Shapiro ME, Mahoney JR, Peyser D, Zingman BS, Verghese J (2014) Cognitive reserve protects against apathy in individuals with human immunodeficiency virus. Arch Clin Neuropsychol 29(1):110–120

    Article  PubMed  Google Scholar 

  • Siuciak J, Pickering EH, Immermann F, Kuhn M, Shaw L, Potter W (2012) Cerebrospinal fluid (CSF) biomarkers in Alzheimer’s disease (AD), mild cognitively impaired (MCI) and age-matched healthy controls (HC) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Alzheimers Dement 8(4):216–217

    Article  Google Scholar 

  • Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(2):112–117

    Article  PubMed  Google Scholar 

  • Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, Ellis R (2011) Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS (London, England) 25(3):357

    Article  Google Scholar 

  • Stern Y (2011) Elaborating a hypothetical concept: comments on the special series on cognitive reserve. J Int Neuropsychol Soc 17(4):639–642

    PubMed Central  PubMed  Google Scholar 

  • Stern Y, Albert S, Tang MX, Tsai WY (1999) Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 53(9):1942–1947

    Article  CAS  PubMed  Google Scholar 

  • Stern RA, Silva SG, Chaisson N, Evans DL (1996) Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Arch Neurol 53(2):148–153

    Article  CAS  PubMed  Google Scholar 

  • Tate DF, Sampat M, Harezlak J et al (2011) Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neuro Virol

  • Tozzi V, Balestra P, Bellagamba R et al (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45(2):174–182

    Article  PubMed  Google Scholar 

  • Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG (1996) Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 46(3):783–788

    Article  CAS  PubMed  Google Scholar 

  • Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8(4):354–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valcour VG, Shikuma CM, Shiramizu BT et al (2005) Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr 38:31–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA et al (2004) Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol 157(1–2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O et al (2006) Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection—the Hawaii Aging with HIV Cohort. J Neurovirol 12:387–391

    Article  PubMed  Google Scholar 

  • van Gorp WG, Hinkin CH (2005) Triple trouble: cognitive deficits from hepatitis C, HIV, and methamphetamine. Neurology 64(8):1328–1329

    Article  PubMed  Google Scholar 

  • Woods AJ, Cohen RA, Pahor M (2013) Cognitive frailty: frontiers and challenges. J Nutr Health Aging 17(9):741–743

    Article  CAS  PubMed  Google Scholar 

  • Yiannoutsos CT, Ernst T, Chang L, Lee PL, Richards T, Marra CM et al (2004) Regional patterns of brain metabolites in AIDS dementia complex. Neuroimage 23:928–935

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors, Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, Zhong J, Daar ES, Alger JR, Brown M, Singer EJ, Campbell TB, McMahon D, So YT, Yiannoutsos CT, and Navia BA, declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Harezlak.

Additional information

Sources: NIH grants NS36524, RR025780, U01MH083506, U01MH083500, NS038841, AI069424, and MH083506

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harezlak, J., Cohen, R., Gongvatana, A. et al. Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J. Neurovirol. 20, 294–303 (2014). https://doi.org/10.1007/s13365-014-0246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-014-0246-6

Keywords

Navigation