Skip to main content

Advertisement

Log in

Mitochondrial dysfunction in rabies virus infection of neurons

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Infection with the challenge virus standard-11 (CVS) strain of fixed rabies virus induces neuronal process degeneration in adult mice after hindlimb footpad inoculation. CVS-induced axonal swellings of primary rodent dorsal root ganglion neurons are associated with 4-hydroxy-2-nonenal protein adduct staining, indicating a critical role of oxidative stress. Mitochondrial dysfunction is the major cause of oxidative stress. We hypothesized that CVS infection induces mitochondrial dysfunction leading to oxidative stress. We investigated the effects of CVS infection on several mitochondrial parameters in different cell types. CVS infection significantly increased maximal uncoupled respiration and complex IV respiration and complex I and complex IV activities, but did not affect complex II–III or citrate synthase activities. Increases in complex I activity, but not complex IV activity, correlated with susceptibility of the cells to CVS infection. CVS infection maintained coupled respiration and rate of proton leak, indicating a tight mitochondrial coupling. Possibly as a result of enhanced complex activity and efficient coupling, a high mitochondrial membrane potential was generated. CVS infection reduced the intracellular ATP level and altered the cellular redox state as indicated by a high NADH/NAD+ ratio. The basal production of reactive oxygen species (ROS) was not affected in CVS-infected neurons. However, a higher rate of ROS generation occurred in CVS-infected neurons in the presence of mitochondrial substrates and inhibitors. We conclude that CVS infection induces mitochondrial dysfunction leading to ROS overgeneration and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105:14447–14452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bao J, Scott I, Lu Z, Pang L, Dimond CC, Gius D, Sack MN (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med 49:1230–1237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardeletti G (1977) Respiration and ATP level in BHK21/13S cells during the earlist stages of rubella virus replication. Intervirology 8:100–109

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BW, Chen H, Boyle JA, Bamburg JR (2006) Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol 291:C828–C839

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Roumier T, Andreau K, Gonzalez-Polo RA, Zamzami N, Castedo M, Kroemer G (2003) Mitochondrion-targeted apoptosis regulators of viral origin. Biochem Biophys Res Commun 304:575–581

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Pauleau AL, Poncet D, Gonzalez-Polo RA, Zamzami N, Kroemer G (2004) Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta 1659:178–189

    Article  CAS  PubMed  Google Scholar 

  • Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49:304–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • da Silva LS, da Silva APP, Da Poian AT, El-Bacha T (2012) Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PLoS One 7:e33871

    Google Scholar 

  • El-Bacha T, Da Poian AT (2013) Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol 45:4110–4146

    Google Scholar 

  • Fu ZF, Jackson AC (2005) Neuronal dysfunction and death in rabies virus infection. J Neurovirol 11:101–106

    Article  CAS  PubMed  Google Scholar 

  • Gambini J, Gomez-Cabrera MC, Borras C, Valles SL, Lopez-Grueso R, Martinez-Bello VE, Herranz D, Pallardo FV, Tresguerres JA, Serrano M, Vina J (2011) Free [NADH]/[NAD(+)] regulates sirtuin expression. Arch Biochem Biophys 512:24–29

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, Obach D, Prevost MC, Jacob Y, Bourhy H (2008) Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol 82:4774–4784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson AC (ed) (2013a) Rabies: scientific basis of the disease and its management, Thirdth edn. Elsevier Academic Press, Oxford

  • Jackson AC (2013b) Therapy of human rabies. In: Jackson AC (ed) Rabies: scientific basis of the disease and its management, 3rd edn. Elsevier Academic Press, Oxford, pp 573–587

  • Jackson AC, Kammouni W, Zherebitskaya E, Fernyhough P (2010) Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol 84:4697–4705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kammouni W, Hasan L, Saleh A, Wood H, Fernyhough P, Jackson AC (2012) Role of nuclear factor-kB in oxidative stress associated with rabies virus infection of adult rat dorsal root ganglion neurons. J Virol 86:8139–8146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J, Kim SS (2011) Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 21:817–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Wang XZ, Yu JP, Chen ZX, Huang YH, Tao QM (2004) Cytochrome C oxidase III interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system. World J Gastroenterol 10:2805–2808

    CAS  PubMed  Google Scholar 

  • Li XQ, Sarmento L, Fu ZF (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79:10063–10068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Boehning DF, Qian T, Popov VL, Weinman SA (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J 21:2474–2485

    Article  CAS  PubMed  Google Scholar 

  • Lichty BD, McBride H, Hanson S, Bell JC (2006) Matrix protein of Vesicular stomatitis virus harbours a cryptic mitochondrial-targeting motif. J Gen Virol 87:3379–3384

    Article  CAS  PubMed  Google Scholar 

  • Maynard ND, Gutschow MV, Birch EW, Covert MW (2010) The virus as metabolic engineer. Biotechnol J 5:686–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quarato G, Scrima R, Agriesti F, Moradpour D, Capitanio N, Piccoli C (2013) Targeting mitochondria in the infection strategy of the hepatitis C virus. Int J Biochem Cell Biol 45:156–166

    Google Scholar 

  • Roy Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P (2010) Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59:1082–1091

    Article  Google Scholar 

  • Sagara J, Kawai A (1992) Identification of heat shock protein 70 in the rabies virion. Virology 190:845–848

    Article  CAS  PubMed  Google Scholar 

  • Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome in experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7:e1001115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M, Guan Z, Zhang M, Sun L (2013) Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 94:276–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stojanovski D, Johnston AJ, Streimann I, Hoogenraad NJ, Ryan MT (2003) Import of nuclear-encoded proteins into mitochondria. Exp Physiol 88:57–64

    Article  CAS  PubMed  Google Scholar 

  • Teepker M, Anthes N, Fischer S, Krieg JC, Vedder H (2007) Effects of oxidative challenge and calcium on ATP-levels in neuronal cells. NeuroToxicology 28:19–26

    Article  CAS  PubMed  Google Scholar 

  • Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian Institutes of Health Research / Manitoba Regional Partnership Program with the Manitoba Health Research Council (to A.C. Jackson and P. Fernyhough) and the St. Boniface Hospital Research Foundation (to P. Fernyhough). We thank Dr. Ali Saleh for assistance with the ANOVA statistical analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Jackson.

Additional information

Submitted to the Journal of NeuroVirology (NJIV-D-13-00082) on August 2, 2013; Revised and resubmitted on September 20, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alandijany, T., Kammouni, W., Roy Chowdhury, S.K. et al. Mitochondrial dysfunction in rabies virus infection of neurons. J. Neurovirol. 19, 537–549 (2013). https://doi.org/10.1007/s13365-013-0214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-013-0214-6

Keywords

Navigation