Skip to main content
Log in

The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 establishes a latent infection in the sensory neurons of the peripheral nervous system of humans. Although about 80 genes are expressed during the lytic cycle of the virus infection, essentially only one gene is expressed during the latent cycle. This gene is known as the latency-associated transcript (LAT), and it appears to play a role in the latency cycle through an anti-apoptotic function in the 5′ end of the gene and miRNA encoded along the length of the transcript which downregulate some of the viral immediate-early gene products. The LAT gene is about 8.3 kb long and consists of two exons separated by an unusual intron. The intron between the exons consists of two nested introns. This arrangement of introns has been called a twintron. Furthermore, the larger (2 kb) intron has been shown to be very stable. In this study, we measure the stability of the shorter 1.5-kb nested intron and find its half-life is similar to the longer intron. This was achieved by deleting the 0.5-kb overlapping intron from a plasmid construct designed to express the LAT transcript from a tet-inducible promoter and measuring the half-life of the 1.5-kb intron in tissue culture cells. This finding supports the hypothesis that it is the common branch-point region of these nested introns that is responsible for their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002) Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76:717–729

    Article  PubMed  CAS  Google Scholar 

  • Atanasiu D, Kent JR, Gartner JJ, Fraser NW (2006) The stable 2-kb LAT intron of herpes simplex stimulates the expression of heat shock proteins and protects cells from stress. Virology 350:26–33

    Article  PubMed  CAS  Google Scholar 

  • Borah S, Wong AC, Steitz JA (2009) Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proc Natl Acad Sci U S A 106:2577–2582

    Article  PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. EMBO J 10:433–442

    PubMed  CAS  Google Scholar 

  • Copertino DW, Shigeoka S, Hallick RB (1992) Chloroplast group III twintron excision utilizing multiple 5′- and 3′-splice sites. EMBO J 11:5041–5050

    PubMed  CAS  Google Scholar 

  • Deatly AM, Spivack JG, Lavi E, Fraser NW (1987) RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A 84:3204–3208

    Article  PubMed  CAS  Google Scholar 

  • Dobson AT, Sederati F, Devi-Rao G, Flanagan WM, Farrell MJ, Stevens JG, Wagner EK, Feldman LT (1989) Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol 63:3844–3851

    PubMed  CAS  Google Scholar 

  • Doe CQ, Chu-LaGraff Q, Wright DM, Scott MP (1991) The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65:451–464

    Article  PubMed  CAS  Google Scholar 

  • Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci USA 88:790–794

    Article  PubMed  CAS  Google Scholar 

  • Garber DA, Schaffer PA, Knipe DM (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71:5885–5893

    PubMed  CAS  Google Scholar 

  • Henderson G, Jaber T, Carpenter D, Wechsler SL, Jones C (2009) Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. Journal of neurovirology 15:439–448

    Article  PubMed  CAS  Google Scholar 

  • Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001) Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75:3636–3646

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Alami Chentoufi A, Hsiang C, Carpenter D, Osorio N, Benmohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332

    Article  PubMed  CAS  Google Scholar 

  • Kang W, Mukerjee R, Fraser NW (2003) Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312:233–244

    Article  PubMed  CAS  Google Scholar 

  • Krummenacher C, Zabolotny JM, Fraser NW (1997) Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2- kilobase latency-associated transcript. J Virol 71:5849–5861

    PubMed  CAS  Google Scholar 

  • Mador N, Goldenberg D, Cohen O, Panet A, Steiner I (1998) Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72:5067–5075

    PubMed  CAS  Google Scholar 

  • Margolis TP, Imai Y, Yang L, Vallas V, Krause PR (2007) Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 81:1872–1878

    Article  PubMed  CAS  Google Scholar 

  • Mitchell WJ, Deshmane SL, Dolan A, McGeoch DJ, Fraser NW (1990) Characterization of herpes simplex virus type 2 transcription during latent infection of mouse trigeminal ganglia. J Virol 64:5342–5348

    PubMed  CAS  Google Scholar 

  • Moore MJ, Query CC, Sharp PA (1993) Splicing of precursors to messenger RNAs by the spliceosome. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–30

    Google Scholar 

  • Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Rodahl E, Haarr L (1997) Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure. J Virol 71:1703–1707

    PubMed  CAS  Google Scholar 

  • Sambrook JF, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scamborova P, Wong A, Steitz JA (2004) An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol 24:1855–1869

    Article  PubMed  CAS  Google Scholar 

  • Spivack JG, Fraser NW (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J Virol 61:3841–3847

    PubMed  CAS  Google Scholar 

  • Spivack JG, Fraser NW (1988a) Expression of herpes simplex virus type 1 (HSV-1) latency-associated transcripts and transcripts affected by the deletion in avirulent mutant HFEM: evidence for a new class of HSV-1 genes. J Virol 62:3281–3287

    PubMed  CAS  Google Scholar 

  • Spivack JG, Fraser NW (1988b) Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J Virol 62:1479–1485

    PubMed  CAS  Google Scholar 

  • Spivack JG, Woods GM, Fraser NW (1991) Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LAT. J Virol 65:6800–6810

    PubMed  CAS  Google Scholar 

  • Stevens JG (1989) Human herpesviruses: a consideration of the latent state. Microbiol Rev 53:318–332

    PubMed  CAS  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Thames EL, Newton DA, Black SA Jr, Bowman LH (2000) Role of mRNA stability and translation in the expression of cytochrome c oxidase during mouse myoblast differentiation: instability of the mRNA for the liver isoform of subunit VIa. Biochem J 351:133–142

    Article  PubMed  CAS  Google Scholar 

  • Thomas DL, Lock M, Zabolotny JM, Mohan BR, Fraser NW (2002) The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol 76:532–540

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    PubMed  CAS  Google Scholar 

  • Vaessin H, Grell E, Wolff E, Bier E, Jan LY, Jan YN (1991) prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:941–953

    Article  PubMed  CAS  Google Scholar 

  • Wagner EK, Bloom DC (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443

    PubMed  CAS  Google Scholar 

  • Wagner EK, Flanagan WM, Devi-Rao G, Zhang YF, Hill JM, Anderson KP, Stevens JG (1988) The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J Virol 62:4577–4585

    PubMed  CAS  Google Scholar 

  • Wu TT, Su YH, Block TM, Taylor JM (1996) Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol 70:5962–5967

    PubMed  CAS  Google Scholar 

  • Wu TT, Su YH, Block TM, Taylor JM (1998) Atypical splicing of the latency-associated transcripts of herpes simplex type 1. Virology 243:140–149

    Article  PubMed  CAS  Google Scholar 

  • Zabolotny JM, Krummenacher C, Fraser NW (1997) The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol 71:4199–4208

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicholas Ruskoski for excellent technical support. This work was supported by a grant from NIH NS 033768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel W. Fraser.

Additional information

Kerry K. Brinkman and Prakhar Mishra contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkman, K.K., Mishra, P. & Fraser, N.W. The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron. J. Neurovirol. 19, 102–108 (2013). https://doi.org/10.1007/s13365-012-0146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-012-0146-6

Keywords

Navigation