Journal of NeuroVirology

, 17:477 | Cite as

Clinical contributors to cerebral white matter integrity in HIV-infected individuals

  • Assawin Gongvatana
  • Ronald A. CohenEmail author
  • Stephen Correia
  • Kathryn N. Devlin
  • Jadrian Miles
  • Hakmook Kang
  • Hernando Ombao
  • Bradford Navia
  • David H. Laidlaw
  • Karen T. Tashima


HIV-infected people frequently exhibit brain dysfunction characterized by preferential damage to the cerebral white matter. Despite suppressed viral load and reconstituted immune function afforded by combination antiretroviral therapy (CART), brain dysfunction continues to be observed even in medically stable individuals. To provide insight into the etiology of HIV-associated brain dysfunction in the CART era, we examined the effects of HIV disease markers, antiretroviral treatment, hepatitis C (HCV) coinfection, and age on DTI measures of white matter integrity in a cohort of 85 individuals aged 23 to 65 years with chronic HIV infection. Fractional anisotropy and mean diffusivity were derived from 29 cerebral white matter regions, which were segmented on each individual brain using a high-resolution T1-weighted image and registered to diffusion images. Significant effects of clinical variables were found on white matter abnormalities in nearly all brain regions examined. Most notably, HCV coinfection and older age were associated with decreased anisotropy or increased diffusivity in the majority of brain regions. Individuals with higher current CD4 levels exhibited higher anisotropy in parietal lobe regions, while those undergoing antiretroviral treatment exhibited higher anisotropy in temporal lobe regions. The observed diffuse pattern of white matter injury suggests that future neuroimaging studies should employ methodologies that are not limited to circumscribed regions of interest. The current findings underline the multifactorial nature of HIV-associated brain dysfunction in the CART era, and the importance of examining the effects of HIV disease in the context of other comorbidities, in particular HCV coinfection and aging.


HIV infection Hepatitis C infection Antiretroviral treatment Cerebral white matter Neuroimaging Diffusion tensor imaging 



The research described was supported by NIH grants K99AA020235, R01MH074368, and P30AI042853.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alexander DC, Pierpaoli C, Basser PJ, Gee JC (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20(11):1131–1139. doi: 10.1109/42.963816 PubMedCrossRefGoogle Scholar
  2. Anthony IC, Bell JE (2008) The neuropathology of HIV/AIDS. Int Rev Psychiatr (Abingdon, England) 20(1):15–24. doi: 10.1080/09540260701862037 CrossRefGoogle Scholar
  3. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15(7–8):456–467. doi: 10.1002/nbm.783 PubMedCrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  5. Brew BJ (2004) Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS 18(Suppl 1):S75–S78PubMedGoogle Scholar
  6. Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, Bullitt E et al (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage 47(4):1154–1162. doi: 10.1016/j.neuroimage.2009.04.030 PubMedCrossRefGoogle Scholar
  7. Cherner M, Letendre S, Heaton RK, Durelle J, Marquie-Beck J, Gragg B, Grant I et al (2005) Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology 64(8):1343–1347. doi: 10.1212/01.WNL.0000158328.26897.0D PubMedCrossRefGoogle Scholar
  8. Ciccarelli N, Fabbiani M, Di Giambenedetto S, Fanti I, Baldonero E, Bracciale L, Tamburrini E et al (2011) Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 76(16):1403–1409. doi: 10.1212/WNL.0b013e31821670fb PubMedCrossRefGoogle Scholar
  9. Clifford DB, Evans SR, Yang Y, Gulick RM (2005) The neuropsychological and neurological impact of hepatitis C virus co-infection in HIV-infected subjects. AIDS 19(Suppl 3):S64–S71PubMedCrossRefGoogle Scholar
  10. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R et al (2010a) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32. doi: 10.3109/13550280903552420 PubMedCrossRefGoogle Scholar
  11. Cohen RA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R et al (2010b) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol. doi: 10.3109/13550284.2010.520817
  12. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173PubMedCrossRefGoogle Scholar
  13. Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10(6):350–357PubMedCrossRefGoogle Scholar
  14. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980. doi: 10.1016/j.neuroimage.2006.01.021 PubMedCrossRefGoogle Scholar
  15. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I et al (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group HIV. Neurobehav Res Cent Brain Pathol 9(2):209–217Google Scholar
  16. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 22(2):277–283PubMedGoogle Scholar
  17. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(Suppl 1):S69–S84. doi: 10.1016/j.neuroimage.2004.07.016 PubMedCrossRefGoogle Scholar
  18. Forton DM, Hamilton G, Allsop JM, Grover VP, Wesnes K, O’Sullivan C, Thomas HC et al (2008) Cerebral immune activation in chronic hepatitis C infection: a magnetic resonance spectroscopy study. J Hepatol 49(3):316–322. doi: 10.1016/j.jhep.2008.03.022 PubMedCrossRefGoogle Scholar
  19. Giometto B, An SF, Groves M, Scaravilli T, Geddes JF, Miller R, Tavolato B et al (1997) Accumulation of beta-amyloid precursor protein in HIV encephalitis: relationship with neuropsychological abnormalities. Ann Neurol 42(1):34–40. doi: 10.1002/ana.410420108 PubMedCrossRefGoogle Scholar
  20. Gongvatana A, Schweinsburg BC, Taylor MJ, Theilmann RJ, Letendre SL, Alhassoon OM, Jacobus J et al (2009) White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. J Neurovirol 15(2):187–195. doi: 10.1080/13550280902769756 PubMedCrossRefGoogle Scholar
  21. Gray F, Lescs MC (1993) HIV-related demyelinating disease. Eur j Med 2(2):89–96PubMedGoogle Scholar
  22. Heaton RK, Grant I, Butters N, White DA, Kirson D, Atkinson JH, McCutchan JA et al (1995) The HNRC 500–neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc: JINS 1(3):231–251PubMedCrossRefGoogle Scholar
  23. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096. doi: 10.1212/WNL.0b013e318200d727 PubMedCrossRefGoogle Scholar
  24. Hilsabeck RC, Castellon SA, Hinkin CH (2005) Neuropsychological aspects of coinfection with HIV and hepatitis C virus. Clin Infect Dis 41(Suppl 1):S38–S44. doi: 10.1086/429494 PubMedCrossRefGoogle Scholar
  25. Hinkin CH, Castellon SA, Levine AJ, Barclay TR, Singer EJ (2008) Neurocognition in individuals co-infected with HIV and hepatitis C. J Addict Dis 27(2):11–17PubMedCrossRefGoogle Scholar
  26. Jernigan TL, Archibald S, Hesselink JR, Atkinson JH, Velin RA, McCutchan JA, Chandler J et al (1993) Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Arch Neurol 50(3):250–255PubMedGoogle Scholar
  27. Kirk JB, Goetz MB (2009) Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc 57(11):2129–2138. doi: 10.1111/j.1532-5415.2009.02494.x PubMedCrossRefGoogle Scholar
  28. Laskus T, Radkowski M, Bednarska A, Wilkinson J, Adair D, Nowicki M, Nikolopoulou GB et al (2002) Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol 76(19):10064–10068PubMedCrossRefGoogle Scholar
  29. Letendre S, Paulino AD, Rockenstein E, Adame A, Crews L, Cherner M, Heaton R et al (2007) Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis 196(3):361–370. doi: 10.1086/519285 PubMedCrossRefGoogle Scholar
  30. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, Gelman BB et al (2008) Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65(1):65–70. doi: 10.1001/archneurol.2007.31 PubMedCrossRefGoogle Scholar
  31. Maggi F, Giorgi M, Fornai C, Morrica A, Vatteroni ML, Pistello M, Siciliano G et al (1999) Detection and quasispecies analysis of hepatitis C virus in the cerebrospinal fluid of infected patients. J Neurovirol 5(3):319–323PubMedCrossRefGoogle Scholar
  32. Martin-Thormeyer EM, Paul RH (2009) Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: neurocognitive and neuroimaging features. Neuropsychol Rev 19(2):215–231. doi: 10.1007/s11065-009-9101-6 PubMedCrossRefGoogle Scholar
  33. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL et al (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42(6):963–972. doi: 10.1002/ana.410420618 PubMedCrossRefGoogle Scholar
  34. McAndrews MP, Farcnik K, Carlen P, Damyanovich A, Mrkonjic M, Jones S, Heathcote EJ (2005) Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology 41(4):801–808. doi: 10.1002/hep.20635 PubMedCrossRefGoogle Scholar
  35. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV (2009) Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 23(15):1977–1985. doi: 10.1097/QAD.0b013e32832e77fe PubMedCrossRefGoogle Scholar
  36. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 106(1):15–24PubMedCrossRefGoogle Scholar
  37. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11(3):292–298. doi: 10.1080/13550280590953799 PubMedCrossRefGoogle Scholar
  38. Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B (2009) Regional white matter volume differences in nondemented aging and Alzheimer’s disease. NeuroImage 44(4):1247–1258. doi: 10.1016/j.neuroimage.2008.10.030 PubMedCrossRefGoogle Scholar
  39. Shiramizu B, Williams AE, Shikuma C, Valcour V (2009) Amount of HIV DNA in peripheral blood mononuclear cells is proportional to the severity of HIV-1-associated neurocognitive disorders. J Neuropsychiatry Clin Neurosci 21(1):68–74. doi: 10.1176/appi.neuropsych.21.1.68 PubMedCrossRefGoogle Scholar
  40. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051 PubMedCrossRefGoogle Scholar
  41. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505. doi: 10.1016/j.neuroimage.2006.02.024 PubMedCrossRefGoogle Scholar
  42. Stebbins GT, Smith CA, Bartt RE, Kessler HA, Adeyemi OM, Martin E, Cox JL et al (2007) HIV-associated alterations in normal-appearing white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr 46(5):564–573PubMedCrossRefGoogle Scholar
  43. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, McCutchan JA et al (1998) Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol 55(2):161–168PubMedCrossRefGoogle Scholar
  44. Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30(6):749–761. doi: 10.1016/j.neubiorev.2006.06.002 PubMedCrossRefGoogle Scholar
  45. Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC (2005) Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 26(9):2275–2281PubMedGoogle Scholar
  46. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O, Holck P et al (2004) Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 63(5):822–827PubMedGoogle Scholar
  47. Verucchi G, Calza L, Manfredi R, Chiodo F (2004) Human immunodeficiency virus and hepatitis C virus coinfection: epidemiology, natural history, therapeutic options and clinical management. Infection 32(1):33–46. doi: 10.1007/s15010-004-3063-7 PubMedCrossRefGoogle Scholar
  48. von Giesen H-J, Heintges T, Abbasi-Boroudjeni N, Kücükköylü S, Köller H, Haslinger BA, Oette M et al (2004) Psychomotor slowing in hepatitis C and HIV infection. J Acquir Immune Defic Syndr 35(2):131–137CrossRefGoogle Scholar
  49. Weissenborn K, Krause J, Bokemeyer M, Hecker H, Schuler A, Ennen JC, Ahl B et al (2004) Hepatitis C virus infection affects the brain-evidence from psychometric studies and magnetic resonance spectroscopy. J Hepatol 41(5):845–851. doi: 10.1016/j.jhep.2004.07.022 PubMedCrossRefGoogle Scholar
  50. Woods SP, Rippeth JD, Frol AB, Levy JK, Ryan E, Soukup VM, Hinkin CH et al (2004) Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol 26(6):759–778. doi: 10.1080/13803390490509565 PubMedCrossRefGoogle Scholar
  51. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB (2006) Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 27(3):656–660PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Assawin Gongvatana
    • 1
  • Ronald A. Cohen
    • 1
    Email author
  • Stephen Correia
    • 1
  • Kathryn N. Devlin
    • 1
  • Jadrian Miles
    • 2
  • Hakmook Kang
    • 3
  • Hernando Ombao
    • 4
  • Bradford Navia
    • 5
  • David H. Laidlaw
    • 2
  • Karen T. Tashima
    • 1
  1. 1.Warren Alpert Medical School of Brown UniversityProvidenceUSA
  2. 2.Department of Computer ScienceBrown UniversityProvidenceUSA
  3. 3.Department of BiostatisticsVanderbilt UniversityNashvilleUSA
  4. 4.Department of BiostatisticsBrown UniversityProvidenceUSA
  5. 5.Tufts University School of MedicineMedfordUSA

Personalised recommendations