Skip to main content

Bat echolocation in continental China: a systematic review and first acoustic identification key for the country

A Correction to this article was published on 23 July 2021

This article has been updated

Abstract

The development of increasingly affordable ultrasonic detectors and automatic classifiers has increasingly boosted the use of acoustic recording of echolocation calls to survey bats all over the world. Echolocation call keys are crucial to reliably classify acoustic recordings, but those are not available for many regions, such as China. In the present study, we conducted a systematic review of bat echolocation studies across continental China and developed an acoustic identification key. Based on 130 studies, published from 1999 to 2020, we obtained echolocation parameters from 64 bat species (47.4% of the total echolocating species known from the country). This review highlights the lack of echolocation references from continental China for 71 species, from which, the echolocation of 21 has never been described. Additionally, we developed the Bat Knowledge Index, an indicator that allows the identification of key priority areas for future research on bat acoustics and geographic biases in the existing studies, further highlighting the lack of studies in the northwestern regions of the country. The compiled identification key provides easy-to-follow identification steps to classify the echolocation calls of 114 species (84.5% of all Chinese echolocating species) to either species (11.4%) or phonic group level (88.6%). This key represents a useful baseline tool and a further step to increase bioacoustic studies’ suitability in China.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

References

  1. Adams MD, Law BS, Gibson MS (2010) Reliable automation of bat call identification for eastern New South Wales, Australia, using classification trees and AnaScheme software. Acta Chiropterol 12(1):231–245

    Article  Google Scholar 

  2. Ahlen I, Baagøe HJ (1999) Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterol 1(2):137–150

    Google Scholar 

  3. Arias-Aguilar A, Hintze F, Aguiar LMS, Rufray V, Bernard E, Pereira MJR (2018) Who’s calling? Acoustic identification of Brazilian bats. Mammal Res 63(3):231–253. https://doi.org/10.1007/s13364-018-0367-z

    Article  Google Scholar 

  4. Barataud M (2015) Acoustic ecology of European bats, Species, Identification, Study of Their Habitats and Foraging Behaviour. Biotope, Mèze

    Google Scholar 

  5. Barclay RMR (1999) Bats are not birds–a cautionary note on using echolocation calls to identify bats: a comment. J Mammal 80(1):290–296. https://doi.org/10.2307/1383229

    Article  Google Scholar 

  6. Barré K, Le Viol I, Julliard R, Pauwels J, Newson SE, Julien JF et al (2019) Accounting for automated identification errors in acoustic surveys. Methods Ecol Evol 10(8):1171–1188. https://doi.org/10.1111/2041-210X.13198

    Article  Google Scholar 

  7. Bates PJJ, Nwe T, Pearch MJ, Swe KM, Bu SSH, Tun T (2000) A review of bat research in Myanmar ( Burma) and results of a recent survey. Acta Chiropterol 02(1)

  8. Britzke ER, Gillam EH, Murray KL (2013) Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol 58(2):109–117. https://doi.org/10.1007/s13364-013-0131-3

    Article  Google Scholar 

  9. Bumrungsri S, Harrison DL, Satasook C, Prajukjitr A, Thong-aree S, Bates PJJ (2006) A review of bat research in Thailand with eight new species records for the country. Acta Chiropterol 8(2):325–359

    Article  Google Scholar 

  10. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168. https://doi.org/10.1126/science.1187512

    CAS  Article  PubMed  Google Scholar 

  11. Estrada-Villegas S, Meyer CFJ, Kalko EKV (2010) Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol Conserv 143(3):597–608. https://doi.org/10.1016/j.biocon.2009.11.009

    Article  Google Scholar 

  12. Feijó A, Wang Y, Sun J, Li F, Wen Z, Ge D, Xia L, Yang Q (2019) Research trends on bats in China: a twenty-first century review. Mamm Biol 98:163–172. https://doi.org/10.1016/j.mambio.2019.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fenton BM (1986) Design of bat echolocation calls: implications for foraging ecology and communication. Mammalia. 50. https://doi.org/10.1515/mamm.1986.50.2.193

  14. Fenton MB (2003) Eavesdropping on the echolocation and social calls of bats. Mammal Rev 33(3-4):193–204. https://doi.org/10.1046/j.1365-2907.2003.00019.x

    Article  Google Scholar 

  15. Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammal 62(2):233–243. https://doi.org/10.2307/1380701

    Article  Google Scholar 

  16. Flaquer C, Torre I, Arrizabalaga A (2007) Comparison of sampling methods for inventory of bat communities. J Mammal 88(2):526–533. https://doi.org/10.1644/06-mamm-a-135r1.1

    Article  Google Scholar 

  17. Fu ZY, Dai XY, Xu N, Shi Q, Li GJ, Li B, Li J, Li J, Tang J, Jen PHS, Chen QC (2015) Sexual dimorphism in echolocation pulse parameters of the CF-FM bat, hipposideros pratti. Zool Stud 54(MAY):1–9. https://doi.org/10.1186/s40555-015-0123-x

    Article  Google Scholar 

  18. Fukui D, Agetsuma N, Hill DA (2004) Acoustic identification of eight species of bat (Mammalia: Chiroptera) inhabiting forests of Southern Hokkaido, Japan: potential for conservation monitoring. Zool Sci 21(9):947–955. https://doi.org/10.2108/zsj.21.947

    Article  Google Scholar 

  19. Furey NM, Mackie IJ, Racey PA (2009) The role of ultrasonic bat detectors in improving inventory and monitoring surveys in Vietnamese karst bat assemblages. Curr Zool 55(5):327–341

    Article  Google Scholar 

  20. Gibb R, Browning E, Glover-Kapfer P, Jones KE (2019) Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol Evol 10(2):169–185. https://doi.org/10.1111/2041-210X.13101

    Article  Google Scholar 

  21. He C, Liu Z, Tian J, Ma Q (2014) Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob Chang Biol 20(9):2886–2902. https://doi.org/10.1111/gcb.12553

    Article  PubMed  Google Scholar 

  22. Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol Evol 9(5):1199–1211

    Article  Google Scholar 

  23. Hiryu S, Katsura K, Lin L-K, Riquimaroux H, Watanabe Y (2005) Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. J Acoustic Soc Am 118(6):3927–3933. https://doi.org/10.1121/1.2130940

    Article  Google Scholar 

  24. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):105–108. https://doi.org/10.1038/nature11118

    CAS  Article  Google Scholar 

  25. Hughes AC, Satasook C, Bates PJJ, Soisook P, Sritongchuay T, Jones G, Bumrungsri S (2011) Using echolocation calls to identify Thai bat species: Vespertilionidae, Emballonuridae, Nycteridae and Megadermatidae. Acta Chiropterol 13(2):447–455. https://doi.org/10.3161/150811011x624938

    Article  Google Scholar 

  26. Hutson AM, Mickleburgh SP (2001) Microchiropteran bats: global status survey and conservation action plan, vol 56. IUCN

  27. Ith S, Bumrungsri S, Thomas NM, Bates PJJ, Willette DA, Khan FAA et al (2016) Geographical variation of Rhinolophus affinis (Chiroptera: Rhinolophidae) in the Sundaic subregion of Southeast Asia, including the Malay Peninsula, Borneo and Sumatra. Acta Chiropterol 18(1):141–161

    Article  Google Scholar 

  28. Jennings N, Parsons S, Pocock MJO (2008) Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Can J Zool 86(5):371–377. https://doi.org/10.1139/Z08-009

    Article  Google Scholar 

  29. Jiang F, Min C, Ying L, Zhenxin L, Xichen Z, Jiang Z, Shuyi Z (2003) Sexual differences in morphology and echolocation calls in five Chinese bat species. Acta Zool Sin 49(6):742–747 Retrieved from http://europepmc.org/abstract/CBA/522259

    Google Scholar 

  30. Jiang T, Liu R, Metzner W, You Y, Li S, Liu S, Feng J (2010a) Geographical and individual variation in echolocation calls of the intermediate leaf-nosed bat, Hipposideros larvatus. Ethology 116(8):691–703. https://doi.org/10.1111/j.1439-0310.2010.01785.x

    Article  Google Scholar 

  31. Jiang T, Metzner W, You Y, Liu S, Lu G, Li S, Wang L, Feng J (2010b) Variation in the resting frequency of Rhinolophus pusillus in mainland China: effect of climate and implications for conservation. J Acoust Soc Am 128(4, 1):2204–2211. https://doi.org/10.1121/1.3478855

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang T, Wu H, Feng J (2015) Patterns and causes of geographic variation in bat echolocation pulses. Integr Zool 10(3):241–256. https://doi.org/10.1111/1749-4877.12129

    Article  PubMed  Google Scholar 

  33. Jin, Longru, Lin, Qing A, Sun, Ping K, Liu Y, Feng J (2011) Postnatal development of morphological features and vocalization in the pomona leaf-nosed bat Hipposideros pomona. Acta Theriol 56(1):13–22. https://doi.org/10.1007/s13364-010-0011-z

    Article  Google Scholar 

  34. Jin L, Wang J, Zhang Z, Sun K, Kanwal JS, Feng J (2012) Postnatal development of morphological and vocal features in Asian particolored bat, Vespertilio sinensis. Mamm Biol 77(5):339–344. https://doi.org/10.1016/j.mambio.2012.05.001

    Article  Google Scholar 

  35. Jones G, Van Parij SM (1993) Bimodal echolocation in pipistrelle bats: Are cryptic species present. Proc R Soc B Biol Sci 251(1331):119–125. https://doi.org/10.1098/rspb.1993.0017

    CAS  Article  Google Scholar 

  36. Jones G, Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc B Biol Sci 274(1612):905–912. https://doi.org/10.1098/rspb.2006.0200

    Article  Google Scholar 

  37. Jones G, Siemers BM (2011) The communicative potential of bat echolocation pulses. J Comp Physiol A 197(5):447–457. https://doi.org/10.1007/s00359-010-0565-x

    Article  Google Scholar 

  38. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21(3):149–156. https://doi.org/10.1016/j.tree.2006.01.001

    Article  PubMed  Google Scholar 

  39. Jones G, Zhang S (2008) Bats in China. Retrieved 26 May 2019, from http://www.bio.bris.ac.uk/research/bats/Chinabats/index.htm?_ga=2.267154958.1676641937.1549887747-1136422446.1549887747

  40. Kawai K (2015) In: Ohdachi SD, Ishibashi Y, Iwasa MA, Fukui D, Saitoh T (eds) The Wild Mammals of Japan, 2nd edn. Shoukadoh Publ

  41. Kerbiriou C, Bas Y, Le Viol I, Lorrillière R, Mougnot J, Julien J-F (2019) Bat pass duration measurement: an indirect measure of distance of detection. Diversity 11(3):47. https://doi.org/10.3390/d11030047

    Article  Google Scholar 

  42. Kingston T, Juliana S, Nurul-Ain E, Hashim R, Zubaid A (2012) The Malaysian bat conservation research unit: from a national model to an international network. Malays Appl Biol 41(2):1–10

    Google Scholar 

  43. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc R Soc B Biol Sci 268(1474):1381–1386. https://doi.org/10.1098/rspb.2001.1630

    CAS  Article  Google Scholar 

  44. Kingston T (2010) Research priorities for bat conservation in Southeast Asia: a consensus approach. Biodivers Conserv 19(2):471–484

    Article  Google Scholar 

  45. Kitzes J, Berlow E, Conlisk E, Erb K, Iha K, Martinez N, Newman EA, Plutzar C, Smith AB, Harte J (2017) Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv Lett 10(5):531–538. https://doi.org/10.1111/con4.12321

    Article  PubMed  Google Scholar 

  46. Li X, Liang L, Gong P, Liu Y, Liang F (2013) Bird watching in China reveals bird distribution changes. Chin Sci Bull 58(6):649–656. https://doi.org/10.1007/s11434-012-5458-7

    Article  Google Scholar 

  47. Li Y, Shao Y, Liu Z, Liu Q, Chen Y, Zhang Y, Zhang L (2014) Plasiticity of echolocation call of Himalayan leaf nosed bat in different situations and habitats complexities. Acta Theriologica Sinica 34(3):238–244

    CAS  Google Scholar 

  48. Lin A, Jiang T, Kanwal JS, Lu G, Luo J, Wei X, Luo B, Feng J (2014) Geographical variation in echolocation vocalizations of the Himalayan leaf-nosed bat: contribution of morphological variation and cultural drift. OIKOS 124(3):364–371. https://doi.org/10.1111/oik.01604

    Article  Google Scholar 

  49. López-Baucells A, Rocha R, Bobrowiec P, Bernard E, Palmeirim J, Meyer C (2018a) Field guide to Amazonian bats. Natl Instit Amazon Res (INPA)

  50. López-Baucells A, Torrent L, Rocha R, Bobrowiec PED, Palmeirim JM, Meyer CFJ (2019) Stronger together: combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys. Ecologic\ Inform 49:45–53. https://doi.org/10.1016/j.ecoinf.2018.11.004

    Article  Google Scholar 

  51. López-Baucells A, Torrent L, Rocha R, Pavan AC, Bobrowiec PED, Meyer CFJ (2018b) Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae). Bioacoustics 27(4):341–357. https://doi.org/10.1080/09524622.2017.1357145

    Article  Google Scholar 

  52. Ma J, Liang B, Zhang S, Metzner W (2008) Dietary composition and echolocation call design of three sympatric insectivorous bat species from China. Ecol Res 23(1):113–119. https://doi.org/10.1007/s11284-007-0344-5

    CAS  Article  Google Scholar 

  53. Milne DJ, Armstrong M, Fisher A, Flores T, Pavey CR (2004) A comparison of three survey methods for collecting bat echolocation calls and species-accumulation rates from nightly Anabat recordings. Wildl Res 31(1):57–63. Retrieved from. https://doi.org/10.1071/WR03011

    Article  Google Scholar 

  54. Milne, Damian J. (2002). Key to the bat calls of the Top End of the Northern Territory. Parks and Widlife Commission of the Northern Territory.

    Google Scholar 

  55. Monadjem A, Shapiro JT, Mtsetfwa F, Reside AE, Mccleery RA (2017) Acoustic call library and detection distances for bats of Swaziland. Acta Chiropterol 19(1):175–187

    Article  Google Scholar 

  56. Murray K, Britzke E, Robbins L (2001) Variation in search-phase calls of bats. J Mammal 82:728. https://doi.org/10.1644/1545-1542(2001)082<0728:VISPCO>2.0.CO;2

    Article  Google Scholar 

  57. O’Farrell MJ, Corben C, Gannon WL (2000) Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus). Acta Chiropterol 2(2):185–196

    Google Scholar 

  58. O’Farrell MJ, Miller BW, Gannon WL (2006) Qualitative identification of free-flying bats using the anabat detector. J Mammal 80(1):11–23. https://doi.org/10.2307/1383203

    Article  Google Scholar 

  59. O’Farrell MJ, Gannon WL (1999) A comparison of acoustic versus capture techniques for the inventory of bats. J Mammal 80(1):24–30. https://doi.org/10.2307/1383204

    Article  Google Scholar 

  60. O’Farrell MJ, Miller BW (1999) Use of vocal signatures for the inventory of free-flying Neotropical bats. Biotropica 31(3):507–516. https://doi.org/10.1111/j.1744-7429.1999.tb00394.x

    Article  Google Scholar 

  61. Obrist MK (1995) Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav Ecol Sociobiol 36(3):207–219. https://doi.org/10.1007/BF00177798

    Article  Google Scholar 

  62. Papadatou E, Butlin RK, Altringham JD (2008) Identification of bat species in Greece from their echolocation calls. Acta Chiropterol 10(1):127–143. https://doi.org/10.3161/150811008x331153

    Article  Google Scholar 

  63. Parsons S, Jones G (2000) Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J Exp Biol 203(17):2641–2656 Retrieved from https://jeb.biologists.org/content/203/17/2641

    CAS  Article  Google Scholar 

  64. Pfalzer G, Kusch J (2003) Structure and variability of bat social calls: implications for specificity and individual recognition. J Zool 261(1):21–33. https://doi.org/10.1017/S0952836903003935

    Article  Google Scholar 

  65. Preatoni DG, Nodari M, Chirichella R, Tosi G, Wauters LA, Martinoli A (2005) Identifying bats from time-expanded recordings of search calls: comparing classification methods. J Wildl Manag 69:1601–1614

    Article  Google Scholar 

  66. Ratcliffe JM, Raghuram H, Marimuthu G, Fullard JH, Fenton MB (2005) Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behav Ecol Sociobiol 58(2):157–164. https://doi.org/10.1007/s00265-005-0912-z

    Article  Google Scholar 

  67. Russo D, Voigt CC (2016) The use of automated identification of bat echolocation calls in acoustic monitoring: a cautionary note for a sound analysis. Ecol Indic 66:598–602. https://doi.org/10.1016/j.ecolind.2016.02.036

    Article  Google Scholar 

  68. Shen Q, Liu Q, Chen Y, Zhao J, Peng X-W, Sun Y-X et al (2015) Geographical variation in echolocation calls of least horseshoe bat (Rhinolophus pusillus) in China. Chin J Zool 50(5):716–724

    Google Scholar 

  69. Smith AT, Xie Y (2010) A guide to the mammals of China. Princeton University Press, Princeton (NJ)

    Book  Google Scholar 

  70. Soisook P, Bumrungsri S, Satasook C, Thong VD, Bu SSH, Harrison DL, Bates PJJ (2008) A taxonomic review of Rhinolophus stheno and R. malayanus (Chiroptera: Rhinolophidae) from continental Southeast Asia: an evaluation of echolocation call frequency in discriminating between cryptic species. Acta Chiropterol 10(2):221–242. https://doi.org/10.3161/150811008X414818

    Article  Google Scholar 

  71. QGIS Development Team (2020) QGIS Geographic Information System, Open Source Geospatial Foundation Project

  72. Torrent L, López-Baucells A, Rocha R, Bobrowiec PED, Meyer CFJ (2018) The importance of lakes for bat conservation in Amazonian rainforests: an assessment using autonomous recorders. Remote Sens Ecol Conserv 4(4):339–351. https://doi.org/10.1002/rse2.83

    Article  Google Scholar 

  73. Tuneu-Corral C, Puig-Montserrat X, Flaquer C, Mas M, Budinski I, López-Baucells A (2020) Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats’ responses to climatic and land-cover changes. Ecol Indic 110:105849. https://doi.org/10.1016/j.ecolind.2019.105849

    Article  Google Scholar 

  74. Vaughan N, Jones G, Harris S (1997) Identification of British bat species by multivariate analysis of echolocation parameters. Bioacoustics 7(3):189–207. https://doi.org/10.1080/09524622.1997.9753331

    Article  Google Scholar 

  75. Walters CL, Collen A, Lucas T, Mroz K, Sayer CA, Jones KE (2013) Challenges of using bioacoustics to globally monitor bats. In: Bat Evolution, Ecology, and Conservation. Springer, pp 479–499. https://doi.org/10.1007/978-1-4614-7397-8_23

  76. Waters DA, Gannon WL (2004) Bat call libraries: management and potential use. Bat echolocation research: tools, techniques, and analysis.

  77. Waters DA, Rydell J, Jones G (1995) Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri. Behav Ecol Sociobiol 37(5):321–328. https://doi.org/10.1007/BF00174136

    Article  Google Scholar 

  78. Wei L, Ru B, Zhou Y, Shao W, Zhang L, Hong T et al (2009) Postnatal development of morphological features and vocalization of Rhinolophus pusillus. Zool Res 30(1):91–98. https://doi.org/10.3724/sp.j.1141.2009.01091

    Article  Google Scholar 

  79. Wordley CFR, Foui EK, Mudappa D, Sankaran M, Altringham JD (2014) Acoustic identification of bats in the Southern Western Ghats, India. Acta Chiropterol 16(1):213–222. https://doi.org/10.3161/150811014x683408

    Article  Google Scholar 

  80. Xu W, Xiao Y, Zhang J, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu J, Polasky S, Jiang L, Xiao Y, Shi X, Rao E, Lu F, Wang X, Daily GC, Ouyang Z (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proc Natl Acad Sci 114(7):1601–1606. https://doi.org/10.1073/pnas.1620503114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Xu Z, Jing W, Keping S, Tinglei J, Yunlei J, Jiang F (2008) Echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors. Acta Ecol Sin 28(11):5248–5258. https://doi.org/10.1016/S1872-2032(09)60007-X

    Article  Google Scholar 

  82. Zamora-Gutierrez V, Ortega J, Avila-Flores R, Aguilar-Rodriguez PA, Alarcón-Montano M, Avila-Torresagatón LG et al (2020) The Sonozotz project: assembling an echolocation call library for bats in a megadiverse country. Ecol Evolut 01:1–16

    Google Scholar 

  83. Zhang C, Jiang T, Lu G, Lin A, Sun K, Liu S, Feng J (2018) Geographical variation in the echolocation calls of bent-winged bats, Miniopterus fuliginosus. Zoology 131:36–44. https://doi.org/10.1016/j.zool.2018.05.005

    Article  PubMed  Google Scholar 

  84. Zhang L, Hua N, Sun S (2008) Wildlife trade, consumption and conservation awareness in southwest China. Biodivers Conserv 17(6):1493–1516. https://doi.org/10.1007/s10531-008-9358-8

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang L, Yin F (2014) Wildlife consumption and conservation awareness in China: a long way to go. Biodivers Conserv 23(9):2371–2381. https://doi.org/10.1007/s10531-014-0708-4

    Article  Google Scholar 

  86. Zhao H, Zhang S, Zuo M, Jiang Z, Zhao HH, Zhang SY et al (2003) Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool 259(2):189–195. https://doi.org/10.1017/S0952836902003199

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank all the people behind the Bat Monitoring Program (www.batmonitoring.org) for their involvement in this study, especially Maria Mas Navarro, for helping with the final tables and Toni Arrizabalaga, Carles Flaquer and Xavier Puig-Montserrat for their support in the study. We also want to thank Anderson Feijó for his help with the data on China’s species distribution.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Funding

No funding was received for conducting this study.

Author information

Affiliations

Authors

Contributions

DLB, ALB and AFP conceived the ideas and designed the review; DLB wrote the manuscript with the close supervision of ALB, JCCH and AFP. The key was developed by DLB with the close supervision of ALB and JCCH. ALB and DLB came up with the Bat Knowledge Index. JCCH conducted the review in Chinese with the help of YW for the references. DLB conducted the review in English and developed all the figures with the help of ALB and AFP. LG and YW provided relevant feedback on the development of the review and the manuscript. All authors commented on the drafts and gave their final approval for the publication. The authors have no conflicts of interest to declare.

Corresponding authors

Correspondence to David López-Bosch or Luke Gibson.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no competing interests.

Teaser text

The present review compiles the current knowledge on bat echolocation in mainland China and determines knowledge gaps in this field via a Bat Knowledge Index. Also, the first known acoustic identification key of the species from continental China is provided, allowing for the acoustic identification of 114 of 135 known echolocating bat species.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The data on Figure 5 was captured as part of the article text and should have has been removed. The article has been updated.

Communicated by: Zuzanna Hałat

Supplementary Information

Supplementary data SD1 List of papers obtained from the literature review.

Table S1

Information extracted from each study obtained from the literature review. The species name corresponds to the latest accepted scientific name, while the one found in the reference literature is specified in the third column. The different parameters are pulse duration (Dur), frequency of maximum energy (FME), highest frequency (HF), lowest frequency (LF), start frequency (SF), end frequency (EF) and bandwidth (BW). Of these parameters, we show the mean ± standard deviation and minimum-maximum in parenthesis. Information on the detector used, the author (corresponding to the references listed in Supplementary data SD1), the publishing journal, the language in which the reference was written, the sex of the animal (if provided), the recording method, whether the reference was used for the identification key and the region where the animal was recorded is also provided. (XLSX 57 kb)

Table S2

Information extracted from each reference included in the echolocation key from outside continental China. The species name corresponds to the latest accepted scientific name, while the one found in the reference literature is specified in the second column. The different parameters are pulse duration (Dur), frequency of maximum energy (FME), highest frequency (HF), lowest frequency (LF), start frequency (SF), end frequency (EF) and bandwidth (BW). Of these parameters, we show the mean ± standard deviation and minimum-maximum in parenthesis. Information on the detector used, the author (corresponding to the references listed in Supplementary data SD1), the title of the publication, the publishing journal, the recording method and the country where the animal was recorded is also provided. (XLSX 23 kb)

Table S3

For each region, number of publications found, number of species covered by the publications, number of species known for the region and BKI score. (XLSX 11 kb)

Table S4

Number of publications from continental China for each species recorded. Bold coloured species refer to species with no reference calls published (XLSX 11 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Bosch, D., Huang, J.CC., Wang, Y. et al. Bat echolocation in continental China: a systematic review and first acoustic identification key for the country. Mamm Res 66, 405–416 (2021). https://doi.org/10.1007/s13364-021-00570-x

Download citation

Keywords

  • Chiroptera
  • Asia
  • Acoustic monitoring
  • Recording
  • Call parameters