Determinants of jaguar occupancy at the northern range edge

Abstract

Identifying factors promoting jaguar (Panthera onca) occupancy is crucial for planning effective conservation and management actions that can contribute to long-term population viability. We used camera-trapping and modeled factors affecting detection and occupancy for jaguars in Sonora at 149 sites during August–November 2008 and 2009. We measured 24 covariates presumed to affect detection (n = 6) and occupancy (n = 18) at camera sites, including sampling period and various habitat characteristics. We obtained 29 jaguar detections at 19 sites (naïve occupancy = 0.12) in 5455 trap-days of effort. Jaguar detectability (p = 0.16 ± 0.05) was negatively affected by human presence and varied by study year and sampling period. Jaguar occupancy (ψ = 0.30 ± 0.03) increased as prey richness, the abundance of calves of domestic cattle, and the proportion of subtropical vegetation increased. Jaguar occupancy was lower with increased abundance of adult cattle and peccary, and higher levels of fragmentation. Jaguar occupancy in Sonora was hence driven by a diverse combination of factors which should be considered when planning conservation actions. We suggest that managers mitigate the impact of livestock, especially on subtropical habitats, by employing appropriate fencing. Fencing may increase wildlife prey for jaguars, thereby reducing calf depredation by jaguars, while concurrently protecting habitat from overgrazing. Furthermore, providing financial support for ecotourism and compensation for depredation to offset potential jaguar impacts should be considered for jaguar conservation in Sonora.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abade L, Cusack J, Moll JR et al (2018) Spatial variation in leopard (Panthera pardus) site use across a gradient of anthropogenic pressure in Tanzania’s Ruaha landscape. PLoS One 13(10):e0204370. https://doi.org/10.1371/journal.pone.0204370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Alexander JS, Shi K, Tallent L, Riordan P (2016a) On the high trail: examining determinants of site use by the endangered snow leopard Panthera uncia in Qilianshan, China. Oryx 50(2):231–238. https://doi.org/10.1017/S0030605315001027

    Article  Google Scholar 

  3. Alexander JS, Zhang C, Shi K, Riordan P (2016b) A granular view of a snow leopard population using camera traps in Central China. Biol Conserv 197:27–31. https://doi.org/10.1016/j.biocon.2016.02.023

    Article  Google Scholar 

  4. Amit R, Gordillo-Chavez EJ, Bone R (2013) Jaguars and pumas attacks on livestock in Costa Rica. Human-Wildl Interactions 7(1):77–84

    Google Scholar 

  5. Anile S, Devillard S (2015) Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Anim Conserv 19(1):35–45. https://doi.org/10.1111/acv.12214

    Article  Google Scholar 

  6. Anile S, Devillard S, Ragni B et al (2019) Habitat fragmentation and anthropogenic factors affect wildcat (Felis silvestris silvestris) occupancy and detectability on Mt. Etna. Wildl Biol. https://doi.org/10.2981/wlb.00561

  7. Braczkowski AR, O’Bryan CJ, Stringer MJ et al (2018) Leopards provide public health benefits in Mumbai, India. Front Ecol Environ 16(3):176–182. https://doi.org/10.1002/fee.1776

    Article  Google Scholar 

  8. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  9. Carbone C, Gettleman JL (2002) A common rule for the scaling of carnivore density. Science 295:2273–2276

    CAS  Article  Google Scholar 

  10. Carter NH, Shrestha BK, Karki JB, Pradhan NMB, Liu J (2012) Coexistence between wildlife and humans at fine spatial scales. Proc Natl Acad Sci U S A 109(38):1–6. https://doi.org/10.1073/pnas.1210490109

    Article  Google Scholar 

  11. Carter N, Jasny M, Gurung B, Liu J (2015) Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob Ecol Conserv 3:149–162. https://doi.org/10.1016/j.gecco.2014.11.013

    Article  Google Scholar 

  12. Cassaigne I, Medellin RA, Thompson RW et al (2016) Diet of pumas (Puma concolor) in Sonora, Mexico, as determined by GPS kill sites and molecular identified scat, with comments on jaguar (Panthera onca) diet. Southwest Nat 61(2):125–132. https://doi.org/10.1894/0038-4909-61.2.125

    Article  Google Scholar 

  13. Cavalcanti SMC, Crawshaw PG, Tortato FR (2012) Use of electric fencing and associated measures as deterrents to jaguar predation on cattle in the Pantanal of Brazil. In: Somers MJ, Hayward M (eds) Fencing for conservation. Springer, New York, pp 295–309

    Google Scholar 

  14. Conde DA, Colchero F, Zarza H, Christensen NL Jr, Sexton JO, Manterola C, Chávez C, Rivera A, Azuara D, Ceballos G (2010) Sex matters: modeling male and female habitat differences for jaguar conservation. Biol Conserv 143:1980–1988. https://doi.org/10.1016/j.biocon.2010.04.049

    Article  Google Scholar 

  15. da Silva MX, Paviolo A, Reverberi Tambosi L, Pardini R (2018) Effectiveness of protected areas for biodiversity conservation: mammal occupancy patterns in the Iguaçu national park, Brazil. J Nat Conserv 41:51–62. https://doi.org/10.1016/j.jnc.2017.11.001

    Article  Google Scholar 

  16. de la Torre JA, Nunez JM, Medellin RA (2017) Habitat availability and connectivity for jaguars (Panthera onca) in the southern Mayan forest: conservation priorities for a fragmented landscape. Biol Conserv 206:270–282. https://doi.org/10.1016/j.biocon.2016.11.034

    Article  Google Scholar 

  17. de Leeuw J, Waweru MN, Okello OO, Maloba M, Nguru P, Said MY, Aligula HM, Heitkönig IMA, Reid RS (2001) Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biol Conserv 100:297–306. https://doi.org/10.1016/S0006-3207(01)00034-9

    Article  Google Scholar 

  18. Dias DM, Massara RL, de Campos CB, Rodrigues FHG (2019) Feline predator-prey relationships in a semi-arid biome in Brazil. J Zool 307(4):282–291. https://doi.org/10.1111/jzo.12647

    Article  Google Scholar 

  19. Dickman AJ, Macdonald EA, Macondald DW (2011) A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc Natl Acad Sci U S A 108(34):13937–13944. https://doi.org/10.1073/pnas.1012972108

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duenas-Lopez G, Rosas-Rosas OC, Chapa-Vargas L et al (2015) Connectivity among jaguar populations in the sierra Madre oriental, Mexico. Therya 6(2):449–468. https://doi.org/10.12933/therya-15-257

    Article  Google Scholar 

  21. Espinosa S, Celis G, Branch L (2018) When roads appear jaguars decline: increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS One 13(1):e0189740. https://doi.org/10.1371/journal.pone.0189740

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Fiske I, Chandler R (2011) Unmarked: an r package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43(10):1–23. https://doi.org/10.18637/jss.v043.i10

    Article  Google Scholar 

  23. Gaillard JM, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, van Moorter B (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Philos Trans R Soc B 365:2255–2265. https://doi.org/10.1098/rstb.2010.0085

    Article  Google Scholar 

  24. Gilbert SL, Sivy KJ, Pozzanghera CB, DuBour A, Overduijn K, Smith MM, Zhou J, Little JM, Prugh LR (2017) Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. Conserv Lett 10(4):431–439. https://doi.org/10.1111/conl.12280

    Article  Google Scholar 

  25. Gonzalez-Borrajo N, Lopez-Bajo JV, Palomares F (2017) Spatial ecology of jaguars, pumas, and ocelots: a review of the state of knowledge. Mammal Rev 47:62–75. https://doi.org/10.1111/mam.12081

    Article  Google Scholar 

  26. Gutierrez-Gonzalez CE, Lopez-Gonzalez CA (2017) Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5(e2886):1–16. https://doi.org/10.7717/peerj.2886

    Article  Google Scholar 

  27. Gutierrez-Gonzalez CE, Gomez-Ramirez M, Lopez-Gonzalez C (2012) Estimation of the density of the near threatened jaguar Panthera onca in Sonora, Mexico, using camera trapping and an open population model. Oryx 46(3):431–437. https://doi.org/10.1017/S003060531100041X

    Article  Google Scholar 

  28. Gutierrez-Gonzalez CE, Gomez-Ramire MA, Lopez-Gonzalez CA, Doherty PFJ (2015) Are private reserves effective for jaguar conservation? PLoS One 10(9): e0137541. https://doi.org/10.1371/journal.pone.0137541

  29. Harihar A, Pandav B (2012) Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai arc landscape. PLoS One 7(7):e40105. https://doi.org/10.1371/journal.pone.0040105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Hayward MV, Kamler JF, Montgomery RA et al (2016) Prey preferences of the jaguar Panthera onca reflect the post-pleistocene demise of large prey. Front Ecol Evol 3:148. https://doi.org/10.3389/fevo.2015.00148

    Article  Google Scholar 

  31. Hegglin D, Bontadina F, Deplazes P (2015) Human–wildlife interactions and zoonotic transmission of Echinococcus multilocularis. Trends Parasitol 31(5):167–173. https://doi.org/10.1016/j.pt.2014.12.004

    Article  PubMed  Google Scholar 

  32. Hutchinson GE (1957) Cold spring harbor symposium on quantitative biology. Concluding remarks 22:415–427

    Google Scholar 

  33. Jedrzejewski W, Boede EO, Abarca M et al (2017) Predicting carnivore distribution and extirpation rate based on human impacts and productive factors; assessment of the state of jaguar (Panthera onca) in Venezuela. Biol Conserv 206:132–142. https://doi.org/10.1016/j.biocon.2016.09.027

    Article  Google Scholar 

  34. Jedrzejewski W, Robinson HS, Abarca M et al (2018) Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – application to the jaguar (Panthera onca). PLoS One 13(3):e0194719. https://doi.org/10.1371/journal.pone.0194719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kafley H, Lamicchane BR, Maharjan R et al (2019) Tiger and leopard co-occurrence: intraguild interactions in response to human and livestock disturbance. Basic Appl Ecol 40:78–89. https://doi.org/10.1016/j.baae.2019.07.007

    Article  Google Scholar 

  36. Karanth UK, Nichols JD, Kumar NS et al (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci U S A 101(14):4854–4858.1. https://doi.org/10.1073/pnas.0306210101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Kilshaw K, Montgomery RA, Campbell RD, Hetherington DA, Johnson PJ, Kitchener AC, Macdonald DW, Millspaugh JJ (2016) Mapping the spatial configuration of hybridization risk for an endangered population of the European wildcat (Felis silvestris silvestris) in Scotland. Mamm Res 61(1):1–11. https://doi.org/10.1007/s13364-015-0253-x

    Article  Google Scholar 

  38. Kowalski B, Watson F, Garza C, Delgado B (2015) Effects of landscape covariates on the distribution and detection probabilities of mammalian carnivores. J Mammal 96(3):511–521. https://doi.org/10.1093/jmammal/gyv056

    Article  Google Scholar 

  39. Lesmeister DB, Nielsen CK, Schauber EM, Hellgreen EC (2015) Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildl Monogr 191:1–61. https://doi.org/10.1002/wmon.1015

    Article  Google Scholar 

  40. Levi T, Kilpatrick AM, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci U S A 109(27):10942–10947. https://doi.org/10.1073/pnas.1204536109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Macdonald DW, Loveridge AJ (2010) The biology and conservation of wild felids. Oxford University Press, Oxford.

  42. MacKenzie DI, Nichols JD, Royle JA et al (2017) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, London

    Google Scholar 

  43. Madhusudan MD (2004) Recovery of wild large herbivores following livestock decline in a tropical Indian wildlife reserve. J Appl Ecol 41:858–869. https://doi.org/10.1111/j.0021-8901.2004.00950.x

    Article  Google Scholar 

  44. Mazerolle MJ (2016) Aiccmodavg: model selection and multimodel inference based on (q)aic(c). R package version 2:1–0. https://CRAN.R-project.org/package=AICcmodavg. Accessed 18 Dec 2019

  45. Nagy-Reis MB, Nichols JD, Chiarello AG, Ribeiro MC, Setz EZF (2017) Landscape use and co-occurrence patterns of Neotropical spotted cats. PLoS One 12(1):e0168441. https://doi.org/10.1371/journal.pone.0168441

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Niedballa J, Courtiol A, Sollmann R (2016) Camtrapr: camera trap data management and preparation of occupancy and spatial capture-recapture analyses. R package version 0.99.2. https://CRAN.R-project.org/package=camtrapR. Accessed 18 Dec 2019

  47. O'Connor KM, Nathan LR, Liberati MR et al (2017) Camera trap arrays improve detection probability of wildlife: investigating study design considerations using an empirical dataset. PLoS One 12(4):e0175684. https://doi.org/10.1371/journal.pone.0175684

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Oksanen J, Blanchet FG, Friendly M et al (2016) Vegan: community ecology package. R package version 2:4–1. https://CRAN.R-project.org/package=vegan. Accessed 18 Dec 2019

  49. Olsoy PJ, Zeller KA, Hicke JA, Quigley HB, Rabinowitz AR, Thornton DH (2016) Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol Conserv 203:8–16. https://doi.org/10.1016/j.biocon.2016.08.037

    Article  Google Scholar 

  50. Paviolo A, De Angelo C, Ferraz KMPMB et al (2016) A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic forest of South America. Sci Rep 6:37147. https://doi.org/10.1038/srep37147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Petracca L, Ramirez-Bravo E, Hernandez-Santin L (2014) Occupancy estimation of jaguar Panthera onca to assess the value of east-central Mexico as a jaguar corridor. Oryx 48(1):133–140. https://doi.org/10.1017/S0030605313000069

    Article  Google Scholar 

  52. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Biosci 59(9):779–791. https://doi.org/10.1525/bio.2009.59.9.9

    Article  Google Scholar 

  53. QGIS Development Team (2009) Qgis geographic information system. Open source geospatial

  54. Quigley H, Hoogesteijn R, Hoogesteijn A, Foster R, Payan E, Corrales D, Salom-Perez R, Urbina Y (2015) Observations and preliminary testing of jaguar depredation reduction techniques in and between core jaguar populations. Parks 21(1):63–72. https://doi.org/10.2305/IUCN.CH.2014.PARKS-21-1HQ.en

    Article  Google Scholar 

  55. Quigley H, Foster R, Petracca L et al (2017) Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017. e.T15953A123791436. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en. Accessed 12 Dec 2019

  56. R Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  57. Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143:939–945. https://doi.org/10.1016/j.biocon.2010.01.002

    Article  Google Scholar 

  58. Rampim LE, Santorello LR, Fragoso CE et al (2020) Antagonistic interactions between predator and prey: mobbing of jaguars (Panthera onca) by white-lipped peccaries (Tayassu pecari). Acta Ethol 23:45–48. https://doi.org/10.1007/s10211-020-00335-w

    Article  Google Scholar 

  59. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484. https://doi.org/10.1126/science.1241484

    CAS  Article  PubMed  Google Scholar 

  60. Rodriguez-Soto C, Monroy-Vilchis O, Maiorano L et al (2011) Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation. Divers Distrib 17:350–361. https://doi.org/10.1111/j.1472-4642.2010.00740.x

    Article  Google Scholar 

  61. Rongna F, Xinyue L, Tanming W et al. (2018) Effects of free-ranging livestock on sympatric herbivores at fine spatiotemporal scales. arXiv preprint. https://arxiv.org/abs/1810.11192

  62. Rosas-Rosas OC, Bender LC, Valdez R (2008) Jaguar and puma predation on cattle calves in northeastern Sonora, Mexico. Rangel Ecol Manag 61:554–560. https://doi.org/10.2111/08-0381

    Article  Google Scholar 

  63. Rosas-Rosas O, Bender LC, Valdez R (2010) Habitat correlates of jaguar kill-sites of cattle in northeastern Sonora, Mexico. Hum Wildl Interact 4(1):103–111. https://doi.org/10.26077/7cx9-rn90

    Article  Google Scholar 

  64. Sanderson EW, Redford KH, Chetkiewicz CB et al (2002) Planning to save a species: the jaguar as a model. Conserv Biol 16(1):58–72. https://doi.org/10.1046/j.1523-1739.2002.00352.x

    Article  Google Scholar 

  65. Sarmento PB, Cruz J, Eira C, Fonsec C (2011) Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. Eur J Wildl Res 57:119–131. https://doi.org/10.1007/s10344-010-0405-x

    Article  Google Scholar 

  66. Schieltz JM, Rubenstein DI (2016) Evidence based review: positive versus negative effects of livestock grazing on wildlife. What do we really know? Environ Res Lett 11:113003. https://doi.org/10.1088/1748-9326/11/11/113003

    Article  Google Scholar 

  67. Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biodivers Conserv 158:301–312. https://doi.org/10.1016/j.biocon.2012.08.008

    Article  Google Scholar 

  68. SEMARNAT, Secretary of Natural Resources of Mexico (2004) Norma Oficiales Mexicanas (NOM-144-Ecol.) que establece las medidas fitosanitarias reconocidas internacionalmente para el embalaje de madera, que se utiliza en el comercio internacional de bienes y mercancías

  69. Silva AP, Kilshaw K, Johnson PJ, Macdonald DW, Rosalino LM (2012) Wildcat occurrence in Scotland: food really matters. Divers Distrib 19(2):232–243. https://doi.org/10.1111/ddi.12018

    Article  Google Scholar 

  70. Singh R, Qureshi Q, Sankar K, Krausman PR, Goyal SP (2014) Population and habitat characteristics of caracal in semi-arid landscape, western India. J Arid Environ 103:92–95. https://doi.org/10.1016/j.jaridenv.2014.01.004

    Article  Google Scholar 

  71. Sollmann R, Malzoni Furtado M, Hofer H et al (2012) Using occupancy models to investigate space partitioning between two sympatric large predators, the jaguar and puma in central Brazil. Mamm Biol 77:41–46. https://doi.org/10.1016/j.mambio.2011.06.011

    Article  Google Scholar 

  72. Srbek-Araujio AC (2018) Do female jaguars (Panthera onca Linnaeus, 1758) deliberately avoid camera traps? Mamm Biol 88:26–30. https://doi.org/10.1016/j.mambio.2017.11.001

    Article  Google Scholar 

  73. Steenweg R, Hebblewhite M, Whittington J, Lukacs P, McKelvey K (2018) Sampling scales define occupancy and underlying occupancy–abundance relationships in animals. Ecol 99(1):172–183. https://doi.org/10.1002/ecy.2054

    Article  Google Scholar 

  74. Steinmetz R, Naret Seuaturien N, Wanlop Chutipong W (2013) Tigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivores. Biol Conserv 163:68–78. https://doi.org/10.1016/j.biocon.2012.12.016

    Article  Google Scholar 

  75. Strampelli P, Andresen L, Everatt KT, Somers MJ, Rowcliffe JM (2018) Habitat use responses of the African leopard in a human-disturbed region of rural Mozambique. Mamm Biol 89:14–20. https://doi.org/10.1016/j.mambio.2017.12.003

    Article  Google Scholar 

  76. Swanepoel LH, Somers MJ, Dalerum F (2015) Functional responses of retaliatory killing versus recreational sport hunting of leopards in South Africa. PLoS One 10(4):e0125539. https://doi.org/10.1371/journal.pone.0125539

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Tanner E, White A, Acevedo P, Balseiro A, Marcos J, Gortázar C (2019) Wolves contribute to disease control in a multi-host system. Sci Rep 9(7940):1–12. https://doi.org/10.1038/s41598-019-44148-9

    CAS  Article  Google Scholar 

  78. van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG, Newsome TM (2017) Managing conflict between large carnivores and livestock. Conserv Biol 32(1):26–34. https://doi.org/10.1111/cobi.12959

    Article  PubMed  Google Scholar 

  79. Wang T, Royle JA, Smith JLD et al (2018) Living on the edge: opportunities for Amur tiger recovery in China. Biol Conserv 217:269–279. https://doi.org/10.1016/j.biocon.2017.11.008

  80. Wolf C, Ripple WJ (2017) Range contractions of the world’s large carnivores. R Soc Open Sci 4:170052. https://doi.org/10.1098/rsos.170052

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wultsch C, Caragiulo A, Dias-Freedman I, Quigley H, Rabinowitz S, Amato G (2016) Genetic diversity and population structure of mesoamerican jaguars (Panthera onca): implications for conservation and management. PLoS One 11(10):e0162377. https://doi.org/10.1371/journal.pone.0162377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Yang H, Zhao X, Han B, Wang T, Mou P, Ge J, Feng L (2018) Spatiotemporal patterns of Amur leopards in Northeast China: influence of tigers, prey, and humans. Mamm Biol 92:120–128. https://doi.org/10.1016/j.mambio.2018.03.009

    Article  Google Scholar 

  83. Zanin M, Palomares F, Brito D (2014) What we (don’t) know about the effects of habitat loss and fragmentation on felids. Oryx. 49(1):96–106. https://doi.org/10.1017/S0030605313001609

    Article  Google Scholar 

  84. Zarco-Gonzalez MM, Monroy-Vilchis O, Alaniz J (2013) Spatial model of livestock predation by jaguar and puma in Mexico: conservation planning. Biol Conserv 159:80–87. https://doi.org/10.1016/j.biocon.2012.11.007

    Article  Google Scholar 

  85. Zemanova MA, Perotto-Baldivieso HL, Dickins EL, Gill AB, Leonard JP, Wester DB (2017) Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecol Process 6(21):1–11. https://doi.org/10.1186/s13717-017-0089-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank the ranchers who allowed us access onto their lands. S. Borrego and M. Galaz-Galaz collected data in the field. M. Culver, L. Haynes, J. Kolowski, C. Lopez-Gonzalez, O. Rosas-Rosas, and R. Thompson provided additional logistical support. Useful comments provided by the Associate Editor and an anonymous reviewer have greatly improved this manuscript.

Funding

This project was funded by Southern Illinois University, the National Science Foundation Graduate Research Fellowship Program, Panthera, the Shared Earth Foundation, and the Disney Wildlife Conservation Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Anile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Krzysztof Schmidt

Electronic supplementary material

ESM 1

(PDF 32 kb)

ESM 2

(PDF 28 kb)

ESM 3

(PDF 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anile, S., Greenspan, E. & Nielsen, C.K. Determinants of jaguar occupancy at the northern range edge. Mamm Res 65, 667–677 (2020). https://doi.org/10.1007/s13364-020-00511-0

Download citation

Keywords

  • Camera-trapping
  • Livestock
  • Fragmentation
  • Occupancy
  • Panthera