Temporal segregation among sympatric boreal predators

Abstract

Mechanisms that decrease niche overlap, whether dietary, spatial, or temporal, are important in facilitating the coexistence of sympatric competitors. Since predators commonly partition resources via temporal segregation, we investigated whether it plays a significant role in mediating the coexistence of four common boreal predators: black bear (Ursus americanus), Canada lynx (Lynx canadensis), wolverine (Gulo gulo luscus), and fisher (Pekania pennanti). We examined their daily activity patterns at camera traps (19 sampling sites) in the boreal forest of northwest Alberta (2380 km2). Fishers were distinctly diurnal, while black bears, Canada lynx, and wolverines were cathemeral, resulting in high overlaps among the species (∆ = 0.62 to ∆ = 0.86). Fishers showed the lowest overlap with other species, while other pairs of species were relatively higher. Our results suggest that temporal partitioning plays a smaller role in the coexistence of these predators than anticipated, while revealing some interesting trends and suggesting other factors that may play a role in their niche segregation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Agostinelli C, Lund U 2017 Circular: Circular Statistics. R Package Version 0.4–93

  2. Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia 126(1):134–141

    CAS  PubMed  Article  Google Scholar 

  3. Amstrup SC, Beecham J (1976) Activity patterns of radio-collared black bears in Idaho. J Wildlife Manage 40(2):340–348

    Article  Google Scholar 

  4. Arthur SM, Krohn WB (1991) Activity patterns, movements, and reproductive ecology of fishers in southcentral Maine. J Mammal 72(2):379–385

    Article  Google Scholar 

  5. Aubry KB, Koehler GM, Squires JR 2000 Ecology of Canada lynx in southern boreal forests. In: Ruggiero LF, et al. (eds) Ecology and conservation of lynx in the United States. US Department of Agriculture, Forest Service, General Technical Report RMRS-GTR-30:373-396

  6. Ayres LA, Chow LS, Graber DM 1986 Black bear activity patterns and human induced modifications in Sequoia National Park. Pp. 151-154 in Bears: their biology and management. A Selection of Papers from the Sixth International Conference on Bear Research and Management, Grand Canyon, Arizona, USA, February 1983. International Association for Bear Research and Management

  7. Barrull J, Mate I, Ruiz-Olmo J, Casanovas JG, Gosàlbez J, Salicrú M (2014) Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mamm Biol 79(2):123–131

    Article  Google Scholar 

  8. Bininda-Emonds OR, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74(2):143–175

    CAS  PubMed  Article  Google Scholar 

  9. Bridges AS, Noss AJ 2011 Behavior and activity patterns. Pp. 57-69 in Camera traps in animal ecology: methods and analyses (A. F. O’Connell, J. D. Nichols and K. U. Karanth, eds.). Springer Japan

  10. Brook LA, Johnson CN, Ritchie EG (2012) Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J Appl Ecol 49(6):1278–1286

    Article  Google Scholar 

  11. Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). J Zool 263(3):275–283

    Article  Google Scholar 

  12. Copeland JP, Cesar E, Peek JM, Harris CE, Long CD, Hunter DL (1995) A live trap for wolverine and other forest carnivores. Wildl Soc Bull 23:535−538

  13. Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):210–224

    PubMed  Article  Google Scholar 

  14. Croose E, Bled F, Fowler NL, Beyer DE Jr, Belant JL (2019) American marten and fisher do not segregate in space and time during winter in a mixed-forest system. Ecol Evol 9(8):4906–4916

    PubMed  PubMed Central  Article  Google Scholar 

  15. de Matos Dias D, de Campos CB, Rodrigues FHG (2018) Behavioural ecology in a predator-prey system. Mamm Biol 92:30–36

  16. Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species coexistence in a neotropical felid assemblage. Acta Oecol 36(4):403–412

    Article  Google Scholar 

  17. Estevo CA, Nagy-Reis MB, Nichols JD (2017) When habitat matters: habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One 12(7):e0179489

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Farías-González V, Vega-Flores CN (2019) Spotted skunks (Spilogale angustifrons) photo-captured following gray foxes (Urocyon cinereoargenteus) in tropical dry forest in Central Mexico. J Arid Environ 160:25–31

    Article  Google Scholar 

  19. Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321(5895):1488–1490

    CAS  PubMed  Article  Google Scholar 

  20. Gabriel MW, Woods LW, Wengert GM, Stephenson N, Higley JM, Thompson C, Matthews SM, Sweitzer RA, Purcell K, Barrett RH, Keller SM, Gaffney P, Jones M, Poppenga R, Foley JE, Brown RN, Clifford DL, Sacks BN (2015) Patterns of natural and human-caused mortality factors of a rare forest carnivore, the fisher (Pekania pennanti) in California. PLoS One 10(11):e0140640

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Garneau DE, Post E, Boudreau T, Keech M, Valkenburg P (2007) Spatio-temporal patterns of predation among three sympatric predators in a single-prey system. Wildlife Biol 13(2):186–194

    Article  Google Scholar 

  22. Gompper ME, Kays RW, Ray JC, Lapoint SD, Bogan DA, Cryan JR (2006) A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildlife Soc B 34(4):1142–1151

    Article  Google Scholar 

  23. Harrington LA, Harrington AL, Yamaguchi N, Thom MD, Ferreras P, Windham TR, MacDonald DW (2009) The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression. Ecol 90(5):1207–1216

    Article  Google Scholar 

  24. Hayward MW (2006) Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J Zool 270(4):606–614

    Article  Google Scholar 

  25. Hayward MW, Slotow R (2009) Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. Afr J Wildl Res 39(2):109–126

    Article  Google Scholar 

  26. Hernández-Saintmartín AD, Rosas-Rosas OC, Palacio-Núñez J, Tarango-Arámbula LA, Clemente-Sánchez F, Hoogesteijn AL (2013) Activity patterns of jaguar, puma and their potential prey in san Luis Potosi, Mexico. Acta Zoológica Mexicana (nueva serie) 29(3):520–533

    Google Scholar 

  27. Karanth KU, Srivathsa A, Vasudev D, Puri M, Parameshwaran R, Kumar NS (2017) Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. P Roy Soc B-Biol Sci 284(1848):20161860

    Article  Google Scholar 

  28. Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, Kuzmina ML, Rubenstein DI, Wang W, Pringle RM (2015) DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci 112(26):8019–8024

    CAS  PubMed  Article  Google Scholar 

  29. Khalil H, Pasanen-Mortensen M, Elmhagen B (2014) The relationship between wolverine and larger predators, lynx and wolf, in a historical ecosystem context. Oecologia 175(2):625–637

    PubMed  Article  Google Scholar 

  30. Kitchen AM, Gese EM, Schauster ER (1999) Resource partitioning between coyotes and swift foxes: space, time, and diet. Can J Zool 77(10):1645–1656

    Article  Google Scholar 

  31. Koepfli K, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6(1):10

    PubMed  PubMed Central  Article  Google Scholar 

  32. Kortello AD, Hurd TE, Murray DL (2007) Interactions between cougars (Puma concolor) and gray wolves (Canis lupus) in Banff National Park, Alberta. Ecoscience 14(2):214–222

    Article  Google Scholar 

  33. Koskela A, Kaartinen S, Aspi J, Kojola I, Helle P, Rytkönen S (2013) Does grey wolf presence affect habitat selection of wolverines? Ann Zool Fenn 50(4):216–225

    Article  Google Scholar 

  34. Kronfeld-Schor N, Dayan T (1999) The dietary basis for temporal partitioning: food habits of coexisting Acomys species. Oecologia 121(1):123–128

    PubMed  Article  Google Scholar 

  35. Lariviére S, Huot J, Samson C (1994) Daily activity patterns of female black bears in a northern mixed-forest environment. J Mammal 75(3):613–620

    Article  Google Scholar 

  36. Lesmeister DB, Nielsen CK, Schauber EM, Hellgren EC (2015) Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildlife Monogr 191(1):1–61

    Article  Google Scholar 

  37. Lindzey FG, Meslow EC (1977) Home range and habitat use by black bears in southwestern Washington. J Wildlife Manage 41(3):413–425

    Article  Google Scholar 

  38. Linkie M, Ridout MS (2011) Assessing tiger–prey interactions in Sumatran rainforests. J Zool 284(3):224–229

    Article  Google Scholar 

  39. Long JL (2003) Introduced mammals of the world: their history, distribution and influence. CABI Publishing, Wallingford, United Kingdom

    Book  Google Scholar 

  40. López-Bao JV, Mattisson J, Persson J, Aronsson M, Andrén H (2016) Tracking neighbours promotes the coexistence of large carnivores. Sci Rep-UK 6:23198

    Article  CAS  Google Scholar 

  41. Lucherini M, Reppucci JI, Walker RS, Villalba ML, Wurstten A, Gallardo G, Iriarte A, Villalobos R, Perovic P (2009) Activity pattern segregation of carnivores in the high Andes. J Mamm 90(6):1404–1409

    Article  Google Scholar 

  42. MacHutchon AG (1989) Spring and summer food habits of black bears in the Pelly River Valley, Yukon. Northwest Sci 63(3):116–118

    Google Scholar 

  43. Massara RL, de Oliveira Paschoal AM, Bailey LL, Doherty PF Jr, de Frias BM, Chiarello AG (2018) Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mamm Biol 92:86–93

    Article  Google Scholar 

  44. Mattisson J, Andrén H, Persson J, Segerström P (2010) Effects of species behavior on global positioning system collar fix rates. J Wildlife Manage 74(3):557–563

    Article  Google Scholar 

  45. Mattisson J, Andrén H, Persson J, Segerström P (2011a) Influence of intraguild interactions on resource use by wolverines and Eurasian lynx. J Mamm 92(6):1321–1330

    Article  Google Scholar 

  46. Mattisson J, Persson J, Andrén H, Segerström H (2011b) Temporal and spatial interactions between an obligate predator, the Eurasian lynx (Lynx lynx), and a facultative scavenger, the wolverine (Gulo gulo). Can J Zool 89(2):79–89

    Article  Google Scholar 

  47. McLellan SR, Vashon JH, Johnson EL, Crowley SM, Vashon AD (2018) Fisher predation on Canada lynx in the Northeastern United States. J Wildlife Manage 82(8):1775–1783

    Article  Google Scholar 

  48. Meredith M, Ridout M 2018 Overlap: estimates of coefficient of overlapping for animal activity patterns. R package version 0.3.2

  49. Minta SC, Minta KA, Lott DF (1992) Hunting associations between badgers (Taxidea taxus) and coyotes (Canis latrans). J Mamm 73(4):814–820

    Article  Google Scholar 

  50. Mitchell BD, Banks PB (2005) Do wild dogs exclude foxes? Evidence for competition from dietary and spatial overlaps. Austral Ecol 30(5):581–591

    Article  Google Scholar 

  51. Monterroso P, Alves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68(9):1403–1417

    Article  Google Scholar 

  52. Nagy-Reis MB, Iwakami VH, Estevo CA, Setz EZ (2019) Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity. Mamm Biol 95:1–8

    Article  Google Scholar 

  53. Nagy-Reis MB, Nichols JD, Chiarello AG, Ribeiro MC, Setz EZ (2017) Landscape use and co-occurrence patterns of neotropical spotted cats. PLoS One 12(1):e0168441

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Parsons MA, Lewis JC, Gardner B, Chestnut T, Ransom JI, Werntz DO, Prugh LR (2019) Habitat selection and spatiotemporal interactions of a reintroduced mesocarnivore. J Wildlife Manage 83(5):1172–1184

    Article  Google Scholar 

  55. Pederson VA, Linnell JD, Andersen R, Andrén H, Lindén M, Segerström P (1999) Winter lynx (Lynx lynx) predation on semi-domestic reindeer (Rangifer tarandus) in northern Sweden. Wildlife Biol 5(1):203–212

    Article  Google Scholar 

  56. Pelchat BO, Ruff RL 1986 Habitat and spatial relationships of black bears in boreal mixedwood forest of Alberta. Pp. 81–92 in Bears: their biology and management. A selection of papers from the 6th International Conference on Bear Research and Management, Grand Canyon, Arizona, USA. February 1983. International Association for Bear Research and Management. Missoula, Montana

  57. Powell RA, Buskirk SW, Zielinski WJ (2003) Fisher and marten. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation, 2nd edn. Johns Hopkins University Press, Baltimore, pp 635–649

    Google Scholar 

  58. Powell RA, Zielinski WJ (1994) Fisher. In: Ruggiero LF, Aubry KB, Buskirk SW, Lyon JL, Zielinski WJ (eds) The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States, vol RM-254. U.S. Department of Agriculture, Forest Service, General Technical Report, Fort Collins, pp 38–73

    Google Scholar 

  59. R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

  60. Raine RM, Kansas JL 1990 Black bear seasonal food habits and distribution by elevation in Banff National Park, Alberta. Pp. 297–304 in Bears: their biology and management. A selection of papers from the 8th International Conference on Bear Research and Management, Victoria, British Columbia, Canada. February 1989. International Association for Bear Research and Management. Missoula, Montana

  61. Ramesh T, Kalle R, Sankar K, Qureshi Q (2012) Spatio-temporal partitioning among large carnivores in relation to major prey species in western Ghats. J Zool 287(4):269–275

    Article  Google Scholar 

  62. Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agr Biol Envir St 14(3):322–337

    Article  Google Scholar 

  63. Romero-Munoz A, Maffei L, Cuéllar E, Noss AJ (2010) Temporal separation between jaguar and puma in the dry forests of southern Bolivia. J Trop Ecol 26(3):303–311

    Article  Google Scholar 

  64. Roth JD, Marshall JD, Murray DL, Nickerson DM, Steury TD (2007) Geographic gradients in diet affect population dynamics of Canada lynx. Ecology 88(11):2736–2743

    PubMed  Article  Google Scholar 

  65. Samelius G, Alisauskas RT, Larivière S, Bergman C, Hendrickson CJ, Phipps K, Wood C (2002) Foraging behaviours of wolverines at a large arctic goose colony. Arctic 55(2):148–150

    Article  Google Scholar 

  66. Schoener TW (1974) Resource partitioning in ecological communities. Science 185(4145):27–39

    CAS  PubMed  Article  Google Scholar 

  67. Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol Conserv 158:301–312

    Article  Google Scholar 

  68. Scrafford MA 2017 Wolverine (Gulo gulo luscus) movement, habitat selection, and foraging in a landscape with resource extraction. Dissertation, University of Alberta

  69. Scrafford MA, Boyce MS (2018) Temporal patterns of wolverine (Gulo gulo luscus) foraging in the boreal forest. J Mamm 99(3):693–701

    Article  Google Scholar 

  70. Scrafford MA, Avgar T, Heeres R, Boyce MS (2018) Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav Ecol 29(3):534–542

  71. Strong WL, Leggat KR (1981) Ecoregions of Alberta. Alberta Energy and Natural Resources. Resource Evaluation and Planning Division, Edmonton

    Google Scholar 

  72. Sunarto S, Kelly MJ, Parakkasi K, Hutajulu MB (2015) Cat coexistence in Central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. J Zool 296(2):104–115

    Article  Google Scholar 

  73. Thompson CM, Gese EM (2007) Food webs and intraguild predation: community interactions of a native mesocarnivore. Ecology 88(2):334–346

    PubMed  Article  Google Scholar 

  74. Tobler M 2015 Camera Base. Ver. 1.7. Botanical Research Institute of Texas. Fort Worth, Texas

  75. Torretta E, Serafini M, Puopolo F, Schenone L (2016) Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (NW Italy). Acta Ethol 19(2):123–132

    Article  Google Scholar 

  76. van Dijk J, Gustavsen L, Mysterud A, May R, Flagstad Ø, Brøseth H, Ro A, Re A, Steen H, Landa A (2008) Diet shift of a facultative scavenger, the wolverine, following recolonization of wolves. J Anim Ecol 77(6):1183–1190

    PubMed  Article  Google Scholar 

  77. Vieira EM, Port D (2007) Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J Zool 272(1):57–63

    Article  Google Scholar 

  78. Wengert GM 2013 Ecology of intraguild predation on fishers (Martes pennanti) in California. Dissertation, University of California, Davis

  79. Zielinski WJ, Duncan NP (2004) Diets of sympatric populations of American martens (Martes americana) and fishers (Martes pennanti) in California. J Mamm 85(3):470–477

    Article  Google Scholar 

  80. Zielinski WJ, Duncan NP, Farmer EC, Truex RL, Clevenger AP, Barrett RH (1999) Diet of fishers (Martes pennanti) at the southernmost extent of their range. J Mamm 80(3):961–971

    Article  Google Scholar 

Download references

Funding

We are thankful to the following organizations and grants for the research support they provided: Alberta Conservation Association, Alberta Environment and Parks, Alberta Fish and Game Association – Minister’s Special License, Alberta Trappers Association, Animal Damage Control, Daishowa-Marubeni International, Dene Tha First Nation, Environment Canada, Husky Oil, National Sciences and Engineering Research Council Collaborative Research and Training Experience Environmental Innovation (CREATE-EI), Rocky Mountain Wilderness Society, Safari Club International – Northern Alberta Chapter, TD Friends of the Environment Foundation, The Wolverine Foundation, UAlberta North – Northern Research Award and Wildlife Conservation Society – Garfield Weston Foundation.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Funding acquisition was done by Matthew Scrafford. Data collection was performed by Matthew Scrafford. Data processing and analysis was completed by Colborne Kemna, with input from Mariana Nagy-Reis. All drafts of the manuscript were written by Colborne Kemna, with Mariana Nagy-Reis and Matthew Scrafford providing feedback. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Colborne J. Kemna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Dries Kuijper

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kemna, C.J., Nagy-Reis, M.B. & Scrafford, M.A. Temporal segregation among sympatric boreal predators. Mamm Res 65, 565–572 (2020). https://doi.org/10.1007/s13364-020-00504-z

Download citation

Keywords

  • Gulo gulo luscus
  • Lynx canadensis
  • Pekania pennanti
  • Predators
  • Temporal activity
  • Ursus americanus