Skip to main content

Advertisement

Log in

Small mammals respond to extreme habitat fragmentation in the Brazilian Atlantic Forest according to the landscape continuum model

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

There are several factors that can determine the pattern of habitat use by species in fragmented habitats. Here we investigated the applicability of the continuum model, which predicts that habitat use varies in a continuous way and not categorically like habitat and not-habitat, for small mammal habitat use. We also investigated if habitat-related guilds of species can change their habitual pattern of habitat use in an extremely altered landscape. This study was conducted in a highly fragmented area of Atlantic Forest in Brazil, where forest fragments are immersed in a pasture matrix. We captured mammals using pitfall traps placed in six sampling sites. In each of these sites, we selected four of five different habitats that were available in the local landscape: high-elevation forests without stream, low-elevation forests with stream, forest edges, pasture matrix without stream, and pasture matrix with stream. This study revealed that the theory of the continuum model can be applied for investigating patterns of use of fragmented forests by small mammals. We also observed, in general, low tolerance of forest species to the most disturbed habitat, the pasture matrix without stream. However, a small increase in the complexity of the vegetation, as observed in riparian pasture matrices, seems to mitigate this negative effect, making the abundance, richness, and diversity of small mammals comparable to forest habitats. These results indicate that the presence of streams may facilitate the use of the pasture matrix, contributing for the maintenance of the original community in the fragmented forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre GH (2008) Caracterização da vegetação arbustivo-arbórea de fragmentos de Floresta Ombrófila Densa Montana. Dissertation. Universidade Estadual de Campinas

  • Almeida FC, Bonvicino CR, Cordeiro-Estrela P (2007) Phylogeny and temporal diversification of Calomys (Rodentia, Sigmodontinae): implications for the biogeography of an endemic genus of the open/dry biomes of South America. Mol Phylogenet Evol 42:449–466

    Article  CAS  PubMed  Google Scholar 

  • Animal Care and Use Committee (1998) Guidelines for the capture. Handling and care of mammals as approved by the American Society of Mammalogists. J Mammal 79:1416–1431

    Article  Google Scholar 

  • Antongiovanni M, Metzger JP (2005) Influence of matrix habitats on the occurrence of insectivorous bird species in Amazonian forest fragments. Biol Conserv 122:441–451

    Article  Google Scholar 

  • Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22:465–484

    Article  Google Scholar 

  • Banks SC, Lindenmayer BD (2014) Inbreeding avoidance, patch isolation and matrix permeability influence dispersal and settlement choices by male agile Antechinus in a fragmented landscape. J Anim Ecol 83:515–524

    Article  PubMed  Google Scholar 

  • Becker CG (2007) Desconexão de habitat e o declínio global dos anfíbios. Dissertation, Universidade Estadual de Campinas

  • Bonvicino CR, Lindbergh SM, Maroja LS (2002) Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potential use for monitoring environment. Braz J Biol 62:764–774

    Article  Google Scholar 

  • Bonvicino CR, Oliveira JA, D’Andrea PS (2008) Guia dos roedores do Brasil. com chave para gêneros baseados em caracteres externos. Centro Pan-Americano de Febre Aftosa OPAS/OMS. Rio de Janeiro

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Costa LP, Leite YLR, Mendes SL, Ditchfiels AD (2005) Mammal conservation in Brazil. Conserv Biol 19:672–679

    Article  Google Scholar 

  • Delciellos AC, Vieira MV, Grelle CEV, Cobra P, Cerqueira R (2016) Habitat quality versus spatial variables as determinants of small mammal assemblages in Atlantic Forest fragments. J Mammal 97:253–265

    Article  Google Scholar 

  • Emmons LH, Feer F (1997) Neotropical rainforest mammals: a Field Guide, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JAG, Koper N, Martin AE, Martin J, Metzger JP, Morrison P, Rhodes JR, Saunders DA, Simberloff D, Smith AC, Tischendorf L, Vellend M, Watling JI (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Article  Google Scholar 

  • Feliciano BR, Fernandez FAS, Freitas D, Figueiredo MSL (2002) Population dynamics of small rodents in grassland between fragments of Atlantic Forest in southeastern Brazil. Mamm Biol 67:304–314

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2006) Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112:473–480

    Article  Google Scholar 

  • Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Article  Google Scholar 

  • Fonseca CR, Ganade G, Baldissera R, Becker CG, Boelter CR, Brescovit AD, Campos LM, Fleck T, Fonseca VS, Hartz SM, Joner F, Kaffer MI, Leal-Zanchet AM, Marcelli MP, Mesquita AS, Mondin CA, Paz CP, Petry MV, Piovensan FN, Putzke J, Stranz A, Vergara M, Vieira EM (2009) Towards an ecologically-sustainable forestry in the Atlantic forest. Biol Conserv 142:1209–1219

    Article  Google Scholar 

  • Forero-Medina GA, Vieira MV (2009) Perception of a fragmented landscape by Neotropical marsupials: effects of body mass and environmental variables. J Trop Ecol 25:53–62

    Article  Google Scholar 

  • Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci 106:349–350. https://doi.org/10.1073/pnas.0812016105

    Article  PubMed  PubMed Central  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard RO, Malcom JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

    Article  Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Gentile R, Fernandez FAS (1999) A field comparison of two capture-mark-recapture estimators of small mammal populations. Rev Bras Zool 16:1109–1114

    Article  Google Scholar 

  • Gomes NF (1991) Revisão sistemática do gênero Monodelphis (Didelphidae: Marsupialia). Dissertation, Universidade de São Paulo

  • Halliday TR (1996) Amphibians. In: Sutherland WJ (ed) Ecological census techniques: a handbook. Cambridge University Press, Cambridge, pp 205–216

    Google Scholar 

  • Hammer Y, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Paleontol Eletrônica 4:1–9

    Google Scholar 

  • Hansbauer MM, Storch I, Knauer F, Pilz S, Kuchenhoff H, Végvári Z, Pimentel RG, Metzger JP (2009) Landscape perception by forest understory birds in the Atlantic Rainforest: black-and-white versus shades of grey. Landsc Ecol 25:407–417

    Article  Google Scholar 

  • Harvey CA, Tucker NIJ, Estrada A (2004) Live fences, isolated trees, and windbreaks? Tools for conserving biodiversity in fragmented tropical landscape. In: Schorth G, Fonseca G, Harvey C, Claude G, Vasconcelos H, Izac AN (eds) Agroforestry and biodiversity Conservation in Tropical Landscapes. Island Press, Washington, pp 261–289

    Google Scholar 

  • Hershkovitz P (1998) Report on some sigmodontinae rodents collected in southeastern Brazil with descriptions of a new genus and six new species. Bonn Zool Beitr 47:193–256

    Google Scholar 

  • Heske EJ (1995) Mammalian abundances on forest-farm edges versus forest interiors in southern Illinois: is there an edge effect? J Mammal 76:562–568

    Article  Google Scholar 

  • Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Ingham DS, Samways MJ (1996) Application of fragmentation and variegation models to Epigaeic Invertebrates in South Africa. Conserv Biol 10:1353–1358

    Article  Google Scholar 

  • IUCN (2018) The IUCN red list of threatened Species. Version 2018-1. <www.iucnredlist.org>. Downloaded on 22 February 2018.

  • Krebs CJ (1999) Ecological methodology. Harper and How, New York

    Google Scholar 

  • Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on the forest fragmentation effects. Glob Ecol Biogeogr 15:8–20

    Article  Google Scholar 

  • Lacher TE Jr, Alho CJR (2001) Terrestrial small mammal richness and habitat associations in an Amazon Forest-Cerrado contact zone. Biotropica 33:171–181

    Google Scholar 

  • Lira PK, Fernandez FAZ, Carlos HAS, Curzio PL (2007) Use of fragmented landscape by three species of opossum in south-eastern Brazil. J Trop Ecol 23:427–435

    Article  Google Scholar 

  • Mabry KE, Dreelin EA, Barrett GW (2003) Influence of landscape elements on population densities and habitat use of three small-mammal species. J Mammal 84:20–25

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maisonneuve C, Rioux S (2001) Importance of riparian habitats for small mammal and herpetofaunal communities in agricultural landscape of southern Québec. Agriculture. Ecosyst Environ 83:165–175

    Article  Google Scholar 

  • Manly BFJ (2000) Statistics for environment science and management. West Inc, Cheyenne

    Book  Google Scholar 

  • Manning AD, Lindenmayer DB, Nix HA (2004) Continua and umwelt: Novel perspectives on viewing landscapes. Oikos 104:621–628

    Article  Google Scholar 

  • Martensen AC, Pimentel RG, Metzger JP (2008) Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: implications for conservation. Biol Conserv 141:2184–2192

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens JA, Moss MR (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 112–119

    Chapter  Google Scholar 

  • McIntyre S, Barrett GW (1992) Habitat variegation, an alternative to fragmentation. Conserv Biol 6:146–147

  • McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Article  Google Scholar 

  • Metzger JP (2003) Estrutura da paisagem: o uso adequado de métricas. In: Cullen L Jr, Rudran R, Valladares-Padua C (eds) . Métodos de estudos em biologia da conservação & manejo da vida silvestre. Universidade Federal do Paraná, Curitiba, pp 423–453

    Google Scholar 

  • Ministério do Meio Ambiente/ICMBio (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume II – Mamíferos, 1st edn. MMA/ICMBio, Brasília

    Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots Revisited. CEMEX, MexicoCity

    Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Naxara LRC (2008) Importância dos corredores ripários para a fauna – pequenos mamíferos em manchas de floresta, matriz do entorno e elementos lineares em uma paisagem fragmentada de Mata Atlântica. Dissertation, Universidade de São Paulo

  • Offerman HL, Dale VH, Pearson SM, Bierregaard RO Jr, Neill RV (1995) Effects of forest fragmentation on neotropical fauna: current research and data availability. Environ Rev 3:191–211

    Article  Google Scholar 

  • Olifiers N (2002) Fragmentação. habitat e as comunidades de pequenos mamíferos da Bacia do Rio Macau. RJ. Dissertation, Universidade Federal de Minas Gerais

  • Olifiers N, Gentile R, Fiszon JT (2005) Relation between small-mammal species composition and antrophic variables in the Brazilian Atlantic Forest. Braz J Biol 65:495–501

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JA, Bonvicino C (2006) Ordem Rodentia. In: Reis N, Peracchi AL, Pedro WA, Lima IP (eds) Mamíferos do Brasil. Universidade Estadual de Londrina, Londrina, pp 347–424

    Google Scholar 

  • Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13:2567–2586

    Article  Google Scholar 

  • Pardini R, Souza SM, Braga-Neto R, Metzger JP (2005) The role of forest structure. fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic Forest landscape. Biol Conserv 124:253–266

    Article  Google Scholar 

  • Pardini R, Faria D, Accacio GM, Laps RR, Mariano E, Paciência PA, Dixo M, Baumgarten J (2009) The challenge of maintaining Atlantic Forest biodiversity: a multi-taxa conservation assessment of an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190

    Article  Google Scholar 

  • Parris KM, Lindenmayer DB (2004) Evidence that creation of Pinus radiate plantation in south-eastern Australia has reduced habitat for frogs. Acta Oecol 25:93–101

    Article  Google Scholar 

  • Pires AS, Lira PK, Fernandez FAS, Schittini GM, Oliveira LC (2002) Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol Conserv 108:229–237

    Article  Google Scholar 

  • Prevedello JA, Forero-Medina G, Vieira MV (2011) Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J Zool 284:53–59

    Article  Google Scholar 

  • Price B, McAlpine CA, Kutt AS, Phinn SR, Pullar DV, Ludwig JA (2009) Continuum or discrete patch landscape models for savanna birds? Towards a pluralistic approach. Ecography 32:745–756

    Article  Google Scholar 

  • Püttker T, Pardini R, Meyer-Lucht Y, Sommer S (2008) Response of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants. Brazil. BMC Ecol 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Radambrasil – Ministério de Minas e Energia (1983) Projeto Radambrasil: Levantamento de Recursos Naturais. IBGE, Brasília

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni F, Hirota MM (2009) Brazilian Atlantic forest: how much is left and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragments landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Rocha CFD, Hatano FH, Vrcibradic D, Van Sluys M (2008) Frog species richness. composition and β diversity in coastal Brazilian restinga habitats. Braz J Biol 68:101–107

    Article  CAS  PubMed  Google Scholar 

  • Rocha MF, Passamani M, Louzada J (2011) A small mammal community in a forest fragment, vegetation corridor and coffee matrix system in the Brazilian Atlantic Forest. PLoS ONE 6:e23312. https://doi.org/10.1371/journal.pone.0023312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi RV, Bianconi GV, Pedro WA (2006) Ordem Didelphimorphia. In: Reis N, Peracchi AL, Pedro WA, Lima IP (eds) Mamíferos do Brasil. Universidade Estadual de Londrina, Londrina, pp 27–66

    Google Scholar 

  • Schooley RL, Branch LC (2005) Limited perceptual range and anemotaxis in marsh rice rats Oryzomys palustris. Acta Theriol 50:59–66

    Article  Google Scholar 

  • SIGRH (2008) Sistema de Informações para o Gerenciamento de Recursos Hídricos do Estado de São Paulo. https://www.sigrh.sp.gov.br. Accessed 26 March 2008

  • Simon JL (1997) Resampling: The New Statistics. Resampling Stats Inc, Arlington

    Google Scholar 

  • Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2011) Plantas da Floresta Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880. https://doi.org/10.1111/ele.1227

    Article  PubMed  Google Scholar 

  • Stevens SM, Husband TP (1998) The influence of edge on small mammals: evidence from Brazilian Atlantic forest fragments. Biol Conserv 85:1–8

    Article  Google Scholar 

  • Sutherland WJ et al (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67. https://doi.org/10.1111/1365-2745.12025

    Article  Google Scholar 

  • Tabanez AAJ, Viana VM (2000) Patch structure within Brazilian Atlantic forest fragments and implications for conservation. Biotropica 32:925–933

    Article  Google Scholar 

  • Uezu A, Beyer DD, Metzger JP (2008) Can agroforest woodlots work as stepping Stones for birds in the Atlantic Forest region? Biodivers Conserv 17:1907–1922

    Article  Google Scholar 

  • Umetsu F, Pardini R (2007) Small mammals in a mosaic of forest remnants and anthropogenic habitats – evaluating matrix quality in an Atlantic forest landscape. Landsc Ecol 22:517–530

    Article  Google Scholar 

  • Umetsu F, Metzger JP, Pardini R (2008) Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography 31:359–370

    Article  Google Scholar 

  • Valentin JL (2000) Ecologia Numérica: uma introdução à análise multivariada de dados ecológicos. Interciência, Rio de Janeiro

    Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira. adaptada a um sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  • Vieira EM (1999) Small mammal communities and fire in the Brazilian Cerrado. J Zool 249:75–81

    Article  Google Scholar 

  • Vieira EM, Monteiro-Filho ELA (2003) Vertical stratification of small mammals in the Atlantic rain Forest of south-eastern Brazil. J Trop Ecol 19:501–507

    Article  Google Scholar 

  • Vieira MV, Olifiers N, Delciellos AC, Antunes VZ, Bernardo LR, Grelle CEV, Cerqueira R (2009) Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol Conserv 142:1191–1200

    Article  Google Scholar 

  • Vieira MV, Almeida-Gomes M, Delciellos AC, Cerqueira R, Crouzeilles R (2018) Fair tests of the habitat amount hypothesis require appropriate metrics of patch isolation: an example with small mammals in the Brazilian Atlantic Forest. Biol Conserv 226:264–270

    Article  Google Scholar 

  • Viveiros de Castro EB, Fernandez FAS (2004) Determinants of differential extinction vulnerabilities of small mammals in Atlantic Forest fragments in Brazil. Biol Conserv 119:73–80

    Article  Google Scholar 

  • Voss RS, Lunde DP, Jansa SA (2005) On the contents of Gracilinanus Gradner and Creighton. 1989. with the description of a previously unrecognized clade of small Didelphid marsupials. Am Mus Nat Hist 3482:1–34

    Google Scholar 

  • Wegner JF, Merriam G (1979) Movements by birds and small mammals between a wood and adjoining farmland habitat. J Appl Ecol 16:349–357

    Article  Google Scholar 

  • Zachos F, Habel J (2011) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg

    Book  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zolner PA, Lima SL (1999) Illumination and the perception of remote habitat patches by white-footed mice. Anim Behav 58:489–500

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to assistance of 10 landholders who granted access to their proprieties. We are grateful to the Brazilian Institute for Environmental Resources (licenses 02027.002755/2004-16, N. 567/05; 42831494, N. 12739-1). We thank B. D. A. A. Santos, R. G. Becker, C. G. Becker and several other colleagues for field assistance. We thank R. G. Becker for article revision and suggestions.

Funding

This research was funded by British Ecological Society (grant no. 960/1194), Fundação de Desenvolvimento da Unicamp, and Fundação de Amparo a Pesquisa do Estado de São Paulo (grant no. 2007/56410-1). GP (grant no. 142089/2006-0), EMV (grant no. 300286/1999-6), and PIP (grant no. 303878/2008-8) were supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Paise.

Additional information

Communicated by: Karol Zub

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Species of small mammals (rodents and didelphid marsupials), habitat of preference: forest species (F, use preferably forested areas), generalist species (G, use both forest and open habitats), and open-area species (O, use open areas preferably); and number of individuals captured in the five types of habitats (PS, pasture matrix with stream; PM, pasture matrix without stream; FE, forest edge; FS, low-elevation forest with stream; FH, high-elevation forest without stream) in Atlantic forest, Brazil. The species preferred habitat was determined with data available on previous studies (Emmons and Feer 1997; Gomes 1991; Hershkovitz 1998; Oliveira and Bonvicino 2006; Rossi et al. 2006; Voss et al. 2005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paise, G., Vieira, E.M. & Prado, P.I. Small mammals respond to extreme habitat fragmentation in the Brazilian Atlantic Forest according to the landscape continuum model. Mamm Res 65, 309–322 (2020). https://doi.org/10.1007/s13364-019-00464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-019-00464-z

Keywords

Navigation