How can climate change affect the potential distribution of common genet Genetta genetta (Linnaeus 1758) in Europe?

Abstract

The common genet Genetta genetta is a carnivore of African origin introduced in Europe at least 13 centuries ago. Its distribution, located in the southwest of the continent, is chiefly constrained by climatic factors. With this premise, and taking into account the existing climate change projections, our goal was to assess possible changes in climatic suitability for common genet in Europe in the future. The maximum entropy statistical method was used to evaluate the potential effects of two greenhouse gas scenarios-low and high emissions-of an average ensemble of six different global circulation models. Projections showed that a large increase in climatically suitable habitat for common genet in continental Europe is likely in the next decades. In this way, the species range may expand within Europe to the east and north. The fact that the common genet may be favoured in a scenario of temperature increase is compatible with the origin of the species associated with hotter climates in Africa. However, despite these results, bioclimatic models do not represent the complete biotic and ecological niche of the species (e.g. competition, predation or dispersal ability), and a full understanding of potential future expansions should include factors that also determine the presence of the species at finer local scales. Bearing this in mind, we have to interpret our results as a first step towards the potential for species distribution change in the near future, but further work should incorporate environmental variability beyond climate in future projection assessments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  2. Anon (2001) Climate change 2001. In: The Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  4. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  PubMed  Google Scholar 

  5. Araújo MB, Guilhaumon F, Neto DR, Pozo I, Calmaestra R (2011) Impactos, Vulnerabilidad y Adaptación al Cambio Climático de la Biodiversidad Española. 2 Fauna de Vertebrados. Dirección general de medio Natural y Política Forestal. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid

  6. Beutel TS, Beeton RJS, Baxter GS (1999) Building better wildlife-habitatmodels. Ecography 22:219–223

    Article  Google Scholar 

  7. Calzada J (2007) Genetta genetta (Linnaeus, 1758). In: Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad. SECEM-SECEMU, Madrid, pp 330–332

    Google Scholar 

  8. Camps D (2015) La gineta. Monografías Zoológicas, Serie Ibérica, vol. 2. Tundra Ediciones, Valencia

  9. Camps D, Villero D, Ruiz-Olmo J, Brotons L (2016) Niche constraints to the northwards expansion of the common genet (Genetta genetta, Linnaeus 1758) in Europe. Mamm Biol 81:399–409

    Article  Google Scholar 

  10. Camps D, Ruiz-Olmo J, Delibes M, Aymerich M, Camacho E (2017) Reproductive parameters of the common genet Genetta genetta (Linnaeus, 1758) in Southwest Europe. Mamm Res 62:259–265

    Article  Google Scholar 

  11. Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46

    Article  Google Scholar 

  12. Clevenger AP (1993) Status of martens and genets in the Balearic and Pityusic Islands: Spain. IUCN Small Carniv Conserv 9:18–19

    Google Scholar 

  13. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  CAS  PubMed  Google Scholar 

  14. Delibes M (1999) Genetta genetta. In: Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krystufek B, Reijnders PJH, Spitzenberger F, Stubbe M, Thissen JBM, Vohralík V, Zima J (eds) The atlas of European mammals. Academic Press, Oxford, pp 352–353

    Google Scholar 

  15. Delibes M, Centeno-Cuadros A, Muxart V, Delibes G, Ramos-Fernández J, Morales A (2017) New insights into the introduction of the common genet, Genetta genetta (L.) in Europe. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-017-0548-8

  16. Deniz A, Toros H, Incecik S (2011) Spatial variations of climate indices in Turkey. Int J Climatol 31:394–403

    Article  Google Scholar 

  17. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  19. Franklin J (2009) Mapping species distributions: spatial inference and prediction, 1st edn. Cambridge University Press, New York

    Google Scholar 

  20. Gaubert P, Jiguet F, Bayle P, Angelici FM (2008) Has the common genet (Genetta genetta) spread into South-Eastern France and Italy? Ital Zool 75:43–57

    Article  Google Scholar 

  21. Gaubert P, Machordom A, Morales A, López-Bao JV, Veron G, Amin M, Barros T, Basuony M, Djagoun CAMS, Do Linh San E, Fonseca C, Geffen E, Ozkurt SO, Cruaud C, Couloux A, Palomares F (2011) Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the strait of Gibraltar. J Biogeogr 38:341–358

    Article  Google Scholar 

  22. Gaubert P, Carvalho F, Camps D, Do Linh San E (2015a) Genetta genetta The IUCN Red List of Threatened Species 2015. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T41698A45218636.en. Accessed 12 Sept 2017

  23. Gaubert P, Cerro I, Centeno-Cuadros A, Palomares F, Fournier P, Fonseca C, Paillat JP, Godoy JA (2015b) Tracing historical introductions in the Mediterranean basin: the success story of the common genet (Genetta genetta) in Europe. Biol Invasions 17:1897–1913

    Article  Google Scholar 

  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  25. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  26. Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13:469–471

    Article  Google Scholar 

  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  28. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  29. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794

    Article  Google Scholar 

  30. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–422

    Article  Google Scholar 

  31. Ibáñez I, Clark JS, Dietze MC, Feeley K, Hersh M, LaDeau S, McBride A, Welch NE, Wolosin MS (2006) Predicting biodiversity change: outside the climate envelope, beyond the species-area curve. Ecology 87:1896–1906

    Article  PubMed  Google Scholar 

  32. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, Switzerland

  33. Isaac JL (2009) Effects of climate change on life history: implications for extinction risk in mammals. Endanger Species Res 7:115–123

    Article  Google Scholar 

  34. Jennings AP, Veron G (2009) Family Viverridae. In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world. vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 174–224

  35. Léger F, Ruette S (2010) La répartition de la genette en France. Faune Sauvage 287:16–22

    Google Scholar 

  36. Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816

    Article  Google Scholar 

  37. Mawdsley JR, O'Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  38. McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Article  Google Scholar 

  39. Papeş M, Cuzin F, Gaubert P (2015) Niche dynamics in the European ranges of two African carnivores reflect their dispersal and demographic histories. Biol J Linn Soc 114:737–751

    Article  Google Scholar 

  40. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113

    Article  PubMed  Google Scholar 

  41. Pearson RG, Dawson TP, Liu C (2004) Modeling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Article  Google Scholar 

  42. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WW, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  43. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  44. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  45. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western hemisphere. Proc Natl Acad Sci 109:8606–8611

    Article  PubMed  Google Scholar 

  46. Schneider SH (1996) Encyclopaedia of climate and weather. Oxford University Press, New York

    Google Scholar 

  47. Thomas CD, Cameron A, Green RE, Bakkenes B, Beaumont LJ, Collingham YC, Erasmus BFN, Ferriera De Siqueira M, Grainger A, Hannah L, Hughes L, Graham B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  48. Townsend PA (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605

    Article  Google Scholar 

  49. Trbojević I, Trbojević T, Malešević D, Krofel M (2018) The golden jackal (Canis aureus) in Bosnia and Herzegovina: density of territorial groups, population trend and distribution range. Mamm Res 63:341–348. https://doi.org/10.1007/s13364-018-0365-1

    Article  Google Scholar 

  50. Virgós E, Romero T, Mangas JG (2001) Factors determining “gaps” in the distribution of a small carnivore, the common genet (Genetta genetta), in Central Spain. Can J Zool 79:1544–1551

    Article  Google Scholar 

  51. Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’. Q Rev Biol 86:75–96

    Article  PubMed  Google Scholar 

  52. Willis KJ, Whittaker RJ (2002) Species diversity scale matters. Science 295:1245–1248

    Article  CAS  Google Scholar 

  53. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biol Rev 88:15–30

    Article  PubMed  Google Scholar 

  54. Woldemeskel FM, Sharma A, Sivakumar B, Mehrotra R (2014) A framework to quantify GCM uncertainties for use in impact assessment studies. J Hydrol 519:1453–1465

    Article  Google Scholar 

Download references

Acknowledgements

We thank everyone who has contributed to data collection of genet occurrences. Three anonymous reviewers provided constructive suggestions that improved a final version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Camps.

Additional information

Communicated by: Yayoi Kaneko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camps, D., Villero, D., Ruiz-Olmo, J. et al. How can climate change affect the potential distribution of common genet Genetta genetta (Linnaeus 1758) in Europe?. Mamm Res 64, 175–182 (2019). https://doi.org/10.1007/s13364-018-0399-4

Download citation

Keywords

  • Climate change
  • Climatically suitable habitat
  • Genetta genetta
  • Greenhouse gas scenarios
  • Species distribution model