Advertisement

Inferring the origin and genetic diversity of the introduced wild boar (Sus scrofa) populations in Argentina: an approach from mitochondrial markers

  • Mara I. Sagua
  • C. E. Figueroa
  • D. B. Acosta
  • G. P. Fernández
  • B. N. Carpinetti
  • D. Birochio
  • Mariano L. Merino
Original Paper
  • 2 Downloads

Abstract

The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.

Keywords

Wild boar Argentina Control region Cytochrome b Phylogeny Genetic diversity 

Notes

Acknowledgements

We thank El Palmar National Park rangers, Guillermo Lier, Eduardo Jones, and Pablo Giorgis. We also express our gratitude to Fabian Tittarelli, Lautaro Córdoba, Lucía Curti, Gabriel Castresana, Pablo Rojas, Marina Winter, and Hernán Amendola for their help in collecting wild boar samples and to Alejandra Canalis for the English revisions. Universidad Nacional del Noroeste de la provincia de Buenos Aires (UNNOBA), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CICPBA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) provided financial support for the present research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13364_2018_380_MOESM1_ESM.xlsx (45 kb)
ESM 1 (XLSX 45.1 kb)
13364_2018_380_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 13 kb)

References

  1. Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N, Larson G, Abatzopoulos TH, Triantaphyllidis C (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39(4):713–723CrossRefGoogle Scholar
  2. Alves E, Ovilo C, Rodriguez MC, Silio L (2003) Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim Genet 34(5):319–324CrossRefPubMedGoogle Scholar
  3. Amieva EO (1993) El Parque Luro; su origen, su historia, su presente. Fondo Editorial Pampeano, Santa RosaGoogle Scholar
  4. Aravena P, Skewes O, Gouin N (2015) Mitochondrial DNA diversity of feral pigs from Karukinka Natural Park, Tierra del Fuego Island, Chile. Genet Mol Res 14(2):4245–4257CrossRefPubMedGoogle Scholar
  5. Bandelt HJ, Foster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48CrossRefPubMedGoogle Scholar
  6. Biedma JM (2003) Crónica histórica del Lago Nahuel Huapi. Caleuche, Buenos AiresGoogle Scholar
  7. Carpinetti BN, Castresana G, Rojas P, Grant J, Marcos A, Monterubbianesi M, Borrás P (2014) Vigilancia epidemiológica en poblaciones de cerdos silvestres (Sus scrofa). Implicancias para la salud pública, la producción animal y la conservación de la biodiversidad. SNS 5:67–76Google Scholar
  8. Crosby AW (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, New YorkGoogle Scholar
  9. Daciuk J (1978) IV Estado actual de las especies de mamíferos introducidos en la Subregión Araucana (Rep. Argentina) y grado de coacción ejercido en algunos ecosistemas sur cordilleranos. An Parq Nac 14:105–130Google Scholar
  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772CrossRefPubMedPubMedCentralGoogle Scholar
  11. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  13. García G, Vergara J, Lombardi R (2011) Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet Mol Biol 34(2):329–337CrossRefPubMedPubMedCentralGoogle Scholar
  14. Giuffra E, Kijas JMH, Amarger V, Carlborg Ö, Jeon JT, Andersson L (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154(4):1785–1791PubMedPubMedCentralGoogle Scholar
  15. Godoy JC (1963) Fauna Silvestre. Evaluación de los recursos naturales de Argentina. Tomo VIII. Fauna Silvestre Vol I. Consejo Federal de Inversiones, Buenos AiresGoogle Scholar
  16. Grossi SF, Lui JF, García JE, Meirelles FV (2006) Genetic diversity in wild (Sus scrofa scrofa) and domestic (Sus scrofa domestica) pigs and their hybrids based on polymorphism of a fragment of the D-loop region in the mitochondrial DNA. Genet Mol Res 5(4):564–568PubMedGoogle Scholar
  17. Guadagnin DL, Carvalho Perello LF, Gomes de Moura R (2014) Distribuiçâo atual do javali (Sus scrofa) no Rio Grande do Sul, seus impactos na produçâo rural e nos ambientes naturais. Dissertation. Federaçâo Gaúcha de Caça e TiroGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl acids Symp Ser 41:95–98Google Scholar
  19. Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  20. Hudson WH (1893) Días de ocio en la Patagonia. Continente, Buenos AiresGoogle Scholar
  21. Hudson WH (1918) Allá lejos y hace tiempo. Peuser, Buenos AiresGoogle Scholar
  22. Kijas JMH, Andersson L (2001) A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J Mol Evol 52(3):302–308CrossRefPubMedGoogle Scholar
  23. Kim KI, Lee JH, Li K, Zhang YP, Lee SS, Gongora J, Moran C (2002) Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim Genet 33(1):19–25CrossRefPubMedGoogle Scholar
  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedGoogle Scholar
  25. Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE, Bunevich AN, Kolesnikov M, Jędrzejewska B (2014) Contemporary genetic structure, Phylogeography and past demographic processes of wild boar Sus scrofa population in central and Eastern Europe. PLoS One 9(3):e91401.  https://doi.org/10.1371/journal.pone.0091401 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307(5715):1618–1621CrossRefPubMedGoogle Scholar
  27. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, Vigne J-D, Edwards CJ, Schlumbaum A, Dinu A, Bălăçsescu A, Dolman G, Tagliacozzo A, Manaseryan N, Miracle P, Van Wijngaarden-Bakker L, Masseti M, Bradley DG, Cooper A (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104(39):15276–15281CrossRefPubMedPubMedCentralGoogle Scholar
  28. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116CrossRefGoogle Scholar
  29. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452CrossRefPubMedGoogle Scholar
  30. Lombardi R, Geymonat G, Berrini R (2015) El jabalí en el Uruguay. Problema, desafío y oportunidad. Forestal Atlántico Sur, MontevideoGoogle Scholar
  31. Molins JW (1930) Industrias rurales: Uruguay, 1830–1930: Imprenta Latina, MontevideoGoogle Scholar
  32. Montiel-Sosa JF, Ruiz-Pesini E, Montoya J, Roncalés P, Lopéz-Pérez MJ, Pérez-Martos A (2000) Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA. J Agric Food Chem 48:2829–2832CrossRefPubMedGoogle Scholar
  33. Morales EB (1917) Lagos, selvas y cascadas. Descripciones geográficas. Peuser, Buenos AiresGoogle Scholar
  34. Navas JR (1987) Los vertebrados exóticos introducidos en Argentina. Rev. Mus. Argentino Cienc. Nat., n.s Tomo XIV (2): 7–38Google Scholar
  35. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York 512ppGoogle Scholar
  36. Novillo A, Ojeda RA (2008) The exotic mammals of Argentina. Biol Invasions 10(8):1333–1344CrossRefGoogle Scholar
  37. Oliver WLR, Brisbin IL (1993) Introduced and feral pigs: problems, policy and priorities. In: Oliver WLR (ed) Status survey and conservation action plan: pigs, peccaries and hippos. IUCN, gland, pp 179–191Google Scholar
  38. Oliver W, Leus K (2008) Sus scrofa. The IUCN Red List of Threatened Species 2008: e.T41775A10559847.  https://doi.org/10.2305/IUCN.UK.2008.RLTS.T41775A10559847.en
  39. Ramírez O, Ojeda A, Tomas A, Gallardo D, Huang LS, Folch JM, Clop A, Sanchez A, Badaoui B, Hanotte O, Galoman-Omitogun O, Makuza SM, Soto H, Cadillo J, Kelly L, Cho IC, Yeghoyan S, Perez-Enciso M, Amills M (2009) Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Mol Biol Evol 26(9):2061–2072CrossRefPubMedGoogle Scholar
  40. Read AF, Harvey PH (1989) Life history differences among the eutherian radiations. J Zool 219(2):329–353CrossRefGoogle Scholar
  41. Sambrook J, Russel DW (2001) Rapid isolation of yeast DNA. In: Sambrook J, Russel DW (eds) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 631–632Google Scholar
  42. Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, Davoli R, Apollonio M, Bertorelle G (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 17(7):1745–1762CrossRefPubMedGoogle Scholar
  43. Scandura M, Iacolina L, Apollonio M (2011) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization. Mammal Rev 41(2):125–137CrossRefGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  45. Van Asch B, Pereira F, Santos LS, Carneiro J, Santos N, Amorim A (2012) Mitochondrial lineages reveal intense gene flow between Iberian wild boars and south Iberian pig breeds. Anim Genet 43(1):35–41CrossRefPubMedGoogle Scholar
  46. Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC, Paule L, Gortazar C, Mamuris Z, Jedrzejewska B, Borowik T, Sidorovich VE, Kusak J, Costa S, Schley L, Hartl GB, Apollonio M, Bertorelle G, Scandura M (2014) Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41(5):987–998CrossRefGoogle Scholar
  47. Yu G, Xiang H, Wang J, Zhao X (2013) The phylogenetic status of typical Chinese native pigs: analyzed by Asian and European pig mitochondrial genome sequences. J Anim Sci biotechnol 4(1):9CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • Mara I. Sagua
    • 1
    • 2
  • C. E. Figueroa
    • 1
    • 2
  • D. B. Acosta
    • 1
    • 2
  • G. P. Fernández
    • 1
  • B. N. Carpinetti
    • 3
  • D. Birochio
    • 4
  • Mariano L. Merino
    • 1
    • 5
  1. 1.Centro de Bioinvestigaciones (CeBio)Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA-CICBA)/Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CIT NOBA (UNNOBA-CONICET)PergaminoArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Gestión Ambiental/Ecología, Instituto de Ciencias Sociales y AdministraciónUniversidad Nacional Arturo JauretcheFlorencio VarelaArgentina
  4. 4.Escuela de Producción, Tecnología y AmbienteUniversidad Nacional de Río Negro, Sede AtlánticaViedmaArgentina
  5. 5.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)La PlataArgentina

Personalised recommendations