Macro- and micro-habitat selection of small rodents and their predation risk perception under a novel invasive predator at the southern end of the Americas

Abstract

Invasive predators are responsible for the extinction of numerous island species worldwide. The naïve prey hypothesis suggests that the lack of co-evolutionary history between native prey and introduced predators results in the absence of behavioral responses to avoid predation. The lack of terrestrial mammal predators is a core feature of islands at the southern end of the Americas. Recently, however, the American mink (Neovison vison) established as a novel terrestrial predator, where rodents became a main portion of its diet. Here, we investigated on Navarino Island, Chile, macro- and micro-habitat selection of small rodents using Sherman traps. Additionally, we experimentally tested behavioral responses of small rodents to indirect cues of native raptorial predation risk (vegetation cover) and direct cues of novel mink predation risk (gland odor) using Sherman traps and foraging trays (giving-up density (GUD)). At the macro-habitat level, we detected native rodents of the species Abrothrix xanthorhinus and Oligoryzomys longicaudatus and the exotic Mus musculus. In general, rodents preferred scrubland habitats. At the micro-habitat level, we only captured individuals of A. xanthorhinus. They preferred covered habitats with tall vegetation. GUD increased in opened areas (riskier for raptorial predation) regardless of the presence or not of mink odor. These results suggest that A. xanthorhinus can perceive predation risk by raptors, but not by mink, results that accord with the hypothesis that co-evolutionary history is important for rodents to develop antipredator behavior. Given that these rodents represent an important proportion of mink diet, the low abundances together with the apparent lack of antipredator response raise conservation concerns for the small rodent populations inhabiting the southernmost island ecosystems of the Americas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Altendorf K, Laundre J, Lopez Gonzales C, Brown J (2001) Assessing effects of predation risk on foraging behavior of mule deer. J Mammal 82:430–439

    Article  Google Scholar 

  2. Anderson CB, Rozzi R, Torres-Mura JC, Mcgehee SM, Sherriffs MF, Schüttler E, Rosemond AD (2006) Exotic vertebrate fauna in the remote and pristine Sub-Antarctic Cape Horn Archipelago, Chile. Biodivers Conserv 15:3295–3313. https://doi.org/10.1007/s10531-005-0605-y

    Article  Google Scholar 

  3. Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RJ, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144. https://doi.org/10.1016/j.neubiorev.2005.05.005

    Article  PubMed  Google Scholar 

  4. Blumstein DT (2006) The multipredator hypothesis and the evolutionary persistence of antipredator behavior. Ethology 112:209–217

    Article  Google Scholar 

  5. Bonesi L, Palazon S (2007) The American mink in Europe: status, impacts, and control. Biol Conserv 134:470–483

    Article  Google Scholar 

  6. Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

    Article  Google Scholar 

  7. Carthey AJR, Banks PB (2012) When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator. PLoS One 7:e31804. https://doi.org/10.1371/journal.pone.0031804 doi: 10.1371/journal.pone.0031804

  8. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Article  PubMed  Google Scholar 

  9. Cox JG, Lima SL (2006) Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680

    Article  PubMed  Google Scholar 

  10. Crego RD, Jiménez JE, Rozzi R (2015) Expansión de la invasión del Visón Norteamericano (Neovison vison) en la Reserva de la Biosfera de Cabo de Hornos, Chile. Ans Inst Pat 43:157–162

    Google Scholar 

  11. Crego RD, Jiménez JE, Rozzi R (2016) A synergistic trio of invasive mammals? Facilitative interactions among beavers, muskrats, and mink at the southern end of the Americas. Biol Invasions 18:1923–1938. https://doi.org/10.1007/s10530-016-1135-0

    Article  Google Scholar 

  12. Crego RD, Jiménez JE, Soto C et al (2014) Tendencias poblacionales del visón norteamericano invasor (Neovison vison) y sus principales presas nativas desde su arribo a isla Navarino, Chile. Boletín la Red Latinoamericana para el Estudio de Especies Invasoras 4:4–18

    Google Scholar 

  13. Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. PNAS 113:11261–11265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Falcy MR, Danielson BJ (2013) A complex relationship between moonlight and temperature on the foraging behavior of the Alabama beach mouse. Ecology 94:2632–2637

    Article  PubMed  Google Scholar 

  15. Griffin AS, Evans CS, Blumstein DT (2001) Learning specificity in acquired predator recognition. Anim Behav 62:577–589. https://doi.org/10.1006/anbe.2001.1781

    Article  Google Scholar 

  16. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  17. Ibarra JT, Fasola L, Macdonald DW, Rozzi R, Bonacic C (2009) Invasive American mink Mustela vison in wetlands of the Cape Horn Biosphere Reserve, southern Chile: what are they eating? Oryx 43:87–90

    Article  Google Scholar 

  18. Ippi S, Anderson CB, Rozzi R, Elphick CS (2009) Annual variation of abundance and composition in forest bird assemblages on Navarino Island, Cape Horn Biosphere Reserve, Chile. Ornitol Neotrop 20:231–245

    Google Scholar 

  19. Jaksic FM, Iriarte JA, Jiménez JE, Martínez DR (2002) Invaders without frontiers: cross-border invasions of exotic mammals. Biol Invasions 4:157–173

    Article  Google Scholar 

  20. Jiménez JE, Feinsinger P, Jaksic FM (1992) Spatiotemporal patterns of an irruption and decline of small mammals in north-central Chile. J Mammal 73:356–364

    Article  Google Scholar 

  21. Jędrzejewski W, Rychlik L, Jędrzejewska B (1993) Responses of bank voles to odours of seven species of redators: experimental data and their relevance to natural predator-vole relationships. Oikos 68:251–257

    Article  Google Scholar 

  22. Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394. https://doi.org/10.1080/11956860.1998.11682468

    Article  Google Scholar 

  23. Kotler BP, Brown JS, Hasson O (1991) Factors affecting gerbil foraging behavior and rates of owl predation. Ecology 72:2249–2260. https://doi.org/10.2307/1941575

    Article  Google Scholar 

  24. Kovacs EK, Crowther MS, Webb JK, Dickman CR (2012) Population and behavioural responses of native prey to alien predation. Oecologia 168:947–957. https://doi.org/10.1007/s00442-011-2168-9

    Article  PubMed  Google Scholar 

  25. Krebs CJ (1966) Demographic changes in fluctuating populations of Microtus californicus. Ecol Monogr 36:239–273

    Article  Google Scholar 

  26. Langkilde T, Thawley CJ, Robbins TR (2017) Behavioral adaptations to invasive species: Benefits, costs, and mechanisms of change. In: Naguib M, Podos J, Simmons LW et al (eds) Advances in the study of behavior, vol 49. Elsevier Inc., Cambridge, pp 199–235

    Google Scholar 

  27. Lozada M, Guthmann N, Baccala N (2000) Microhabitat selection of five sigmodontine rodents in a forest-steppe transition zone in northwestern Patagonia. Stud Neotrop Fauna Environ 35:85–90

    Article  Google Scholar 

  28. Lozada M, Monjeau A, Heinemann K et al (1996) Abrothrix xanthorhinus. Mamm Species 540:1–6

    Article  Google Scholar 

  29. MacArthur R, Pianka E (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  30. Macdonald DW, Sidorovich VE, Anisomova EI, Sidorovich NV, Johnson PJ (2002) The impact of American mink Mustela vison and European mink Mustela lutreola on water voles Arvicola terrestris in Belarus. Ecography 25:295–302

    Article  Google Scholar 

  31. Mahlaba TAM, Monadjem A, McCleery R, Belmain SR (2017) Domestic cats and dogs create a landscape of fear for pest rodents around rural homesteads. PLoS One 12:1–9. https://doi.org/10.1371/journal.pone.0171593

    Article  CAS  Google Scholar 

  32. Manly BFJ, McDonald LL, Thomas DL et al (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Springer, New York

    Google Scholar 

  33. Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646

    Article  Google Scholar 

  34. Morris DW, Davidson DL (2000) Optimally foraging mice match patch use with habitat differences in fitness. Ecology 81:2061–2066

    Article  Google Scholar 

  35. Orrock JL (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437

    Article  Google Scholar 

  36. Orrock JL (2010) When the ghost of predation has passed: do rodents from islands with and without fox predators exhibit aversion to fox cues? Ethology 116:338–345. https://doi.org/10.1111/j.1439-0310.2010.01740.x

    Article  Google Scholar 

  37. Pinheiro J, Bates D, DebRoy S et al (2017) nlme: linear and nonlinear mixed effects models. R package version 3:1–131

    Google Scholar 

  38. Quiroz CL, Pauchard A, Cavieres LA et al (2009) Análisis cuantitativo de la investigación en invasiones biológicas en Chile: tendencias y desafíos. Rev Chil Hist Nat 82:497–505

    Google Scholar 

  39. Rabassa J, Coronato A, Bujalesky G, Salemme M, Roig C, Meglioli A, Heusser C, Gordillo S, Roig F, Borromei A, Quattrocchio M (2000) Quaternary of Tierra del Fuego, southernmost South America: an updated review. Quat Int 68–71:217–240. https://doi.org/10.1016/S1040-6182(00)00046-X

    Article  Google Scholar 

  40. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL https://www.R-project.org/

  41. Rozzi R, Jiménez JE (2014) Magellanic Sub-Antarctic ornithology: first decade of bird studies at the Omora Ethnobotanical Park, Cape Horn Biosphere Reserve, Chile. University of North Texas Press, Denton, TX, USA, Universidad de Magallanes, Punta Arenas, Chile

    Google Scholar 

  42. Rozzi R, Massardo F, Anderson CB et al (2006) Ten principles for biocultural conservation at the southern tip of the Americas: the approach of the Omora Ethnobotanical Park. Ecol Soc 11:43

    Article  Google Scholar 

  43. Rozzi R, Sherriffs MF (2003) El visón (Mustela vison Schreber, Carnivora: Mustelidae), un nuevo mamífero exótico para la Isla Navarino. Ans Inst Pat 31:97–104

    Google Scholar 

  44. Sax D, Gaines S (2008) Species invasions and extinction: the future of native biodiversity on islands. PNAS 105:11490–11497

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schüttler E, Cárcamo J, Rozzi R (2008) Diet of the American mink Mustela vison and its potential impact on the native fauna of Navarino Island, Cape Horn Biosphere Reserve, Chile. Rev Chil Hist Nat 81:585–598

    Article  Google Scholar 

  46. Sielfeld W (1977) Reconocimiento macrofaunistico terrestre en el area de Seno Ponsonby (Isla Hoste). Ans Inst Pat 8:275–295

    Google Scholar 

  47. Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621

    Article  Google Scholar 

  48. Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253. https://doi.org/10.1644/10-MAMM-F-355.1

    Article  Google Scholar 

  49. Staples LG (2010) Predator odor avoidance as a rodent model of anxiety: learning-mediated consequences beyond the initial exposure. Neurobiol Learn Mem 94:435–445

    Article  PubMed  Google Scholar 

  50. Strauss SY, Lau JA, Carroll SP (2006) Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol Lett 9:357–374

    Article  PubMed  Google Scholar 

  51. Tapia PA (1995) Patrón de actividad temporal de Abrothrix xanthorhinus (Waterhouse) en el sector de “Laguna Amarga”, Parque Nacional Torres del Paine. Ans Inst Pat 23:47–50

    Google Scholar 

  52. Valenzuela AEJ, Anderson CB, Fasola L, Cabello JL (2014) Linking invasive exotic vertebrates and their ecosystem impacts in Tierra del Fuego to test theory and determine action. Acta Oecol 54:110–118

    Article  Google Scholar 

Download references

Acknowledgements

We thank Matias Barceló, Nicolas Carro, Gabriel Gómez, Simón Castillo, and Omar Barroso for all field work help. We also thank Emiliano Donadio and two anonymous reviewers whose comments helped to improve earlier drafts of this manuscript.

Funding

This study was funded by the Toulouse Graduate School Program at the University of North Texas (UNT), Idea Wild, the Rufford Foundation, the Conservation Research and Education Opportunities International (CREOi), and the Institute of Ecology and Biodiversity of Chile (IEB; grants ICM P05-002 and Basal-CONICYT PFB-23). This study is a contribution of the Sub-Antarctic Biocultural Conservation Program, jointly coordinated by the UNT in the USA, and by the IEB and the Universidad de Magallanes in Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramiro D. Crego.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal capture and handling procedures followed guidelines set by the American Society of Mammalogists (Sikes and Gannon 2011). Permits to capture rodents were given by the Livestock and Agricultural Bureau, Chile (Servicio Agrícola y Ganadero, Resolution Nos. 6518/2013 and 8547/2014).

Additional information

Communicated by: Andrzej Zalewski

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crego, R.D., Jiménez, J.E. & Rozzi, R. Macro- and micro-habitat selection of small rodents and their predation risk perception under a novel invasive predator at the southern end of the Americas. Mamm Res 63, 267–275 (2018). https://doi.org/10.1007/s13364-018-0361-5

Download citation

Keywords

  • American mink
  • Cape Horn
  • Giving-up densities
  • Habitat use
  • Invasive species