Mammal Research

, Volume 63, Issue 2, pp 185–196 | Cite as

Diffusive dispersal in a growing ungulate population: guanaco expansion beyond the limits of protected areas

  • Esperanza C. IranzoEmail author
  • Pablo Acebes
  • Cristián F. Estades
  • Benito A. González
  • Cristina Mata
  • Juan E. Malo
  • Juan Traba
Original Paper


Growth of wild ungulate populations within protected areas can cause an expansion towards surrounding non-protected areas and lead to conflicts with human activities. The spatial and demographic structure of colonizing populations inform about their state and potential trends, since the initial colonization by dispersing individuals precedes the establishment of a population with potential for further growth and expansion. Once colonization has succeeded, the spatial pattern of animal abundance is associated with intra- and interspecific interactions and environmental factors (e.g., habitat and food availability) and the population shows similar demographic features throughout the whole occupation area, which has been called a diffusive dispersal pattern. Here, we analyze the current status of colonization by a guanaco population of ranches surrounding a protected area in Chilean Patagonia with data gathered along three consecutive years. We thus compared animal abundance and social structure between the protected and unprotected areas and evaluated throughout the whole area the effect of environmental factors on guanaco abundance, proportion of family groups, and reproductive success. Guanaco abundance significantly declined with increasing distance from the center of the local distribution and marginally with predation risk. Moreover, social structure showed only minor differences between areas, pointing to a diffusive dispersal pattern. These results suggest that the population is already well established and has the potential to grow and continue its expansion. The case exemplifies a challenging outcome of successful animal conservation, and it presents a useful approach to evaluate the state of wild ungulate populations colonizing new areas.


Population density Abundance Population dynamics Population structure Mammal dispersal 



We thank CONAF (Corporación Nacional Forestal) and SAG (Servicio Agrícola Ganadero- Government of Chile) for sharing the data presented in the introduction, permissions, and support to conduct this study. Special thanks to N. Soto (from SAG-Magallanes) and A. Kroeger (from estancias Cerro Guido and El Kark), the staff at the Torres del Paine National Park, and ranchers from Torres del Paine municipality (XII Region, Chile) for their collaboration and to volunteers for their assistance with fieldwork, especially M.A. Vukasovic and N. Fuentes. The manuscript was improved by the helpful review of H. Wittmer and two anonymous referees.

Funding information

This research was funded by an Interuniversity Cooperation Program from Agencia Española de Cooperación Internacional para el Desarrollo (A/016431/08 and A/024945/09), Interuniversity Cooperation Project CEAL-UAM-Santander, and a Cooperation Agreement between UAM and SAG. Partial support for UAM researchers was provided by the Remedinal-3 research network (S-2013/MAE-2719) and by Universidad de Chile. E. Iranzo was funded by a FPU grant from the Ministerio de Educación Cultura y Deporte (Government of Spain).

Supplementary material

13364_2017_345_MOESM1_ESM.docx (16 kb)
Table S1 (DOCX 15 kb)


  1. Acebes P, Malo JE, Traba J (2013) Trade-offs between food availability and predation risk in desert environments: the case of polygynous monomorphic guanaco (Lama guanicoe). J Arid Environ 97:136–142CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification Automatic Control. IEEE Trans 19:716–723. Google Scholar
  3. Andersen R, Herfindel I, Sæther BE, Linnell JD, Oddén J, Liberg O (2004) When range expansion rate is faster in marginal habitats. Oikos 107:210–214CrossRefGoogle Scholar
  4. Baldi R, Acebes P, Cuéllar E, Funes M, Hoces D, Puig S, Franklin WL (2016) Lama guanicoe. The IUCN Red List of Threatened Species 2016 doi: Accessed 19 Aug 2016
  5. Bank MS, Sarno RJ, Franklin WL (2003) Spatial distribution of guanaco mating sites in southern Chile: conservation implications. Biol Conserv 112:427–434CrossRefGoogle Scholar
  6. Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F (2012) Relating habitat and climatic niches in birds. PLoS One 7:e32819CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barrera K, Soto N, Cabello J, Antúnez D (2010) El puma. Antencedentes para su conservación y manejo en Magallanes. Servicio Agrícola y Ganadero, Punta ArenasGoogle Scholar
  8. Bates D, Maechler M, Bolker M, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  9. Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman & Hall, LondonGoogle Scholar
  10. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, LondonGoogle Scholar
  11. Burgi MV, Marino A, Rodriguez MV, Pazos G, Baldi R (2012) Response of guanacos Lama Guanicoe to changes in land management in Peninsula Valdes, Argentine Patagonia: conservation implications. Oryx 46:99–105. CrossRefGoogle Scholar
  12. Clutton-Brock T, Coulson T (2002) Comparative ungulate dynamics: the devil is in the detail. Philos Trans R Soc B: Biol Sci 357:1285–1298CrossRefGoogle Scholar
  13. Conradt L, Clutton-Brock TH, Guinness FE (1999) The relationship between habitat choice and lifetime reproductive success in female red deer. Oecologia 120:218–224CrossRefPubMedGoogle Scholar
  14. Coulson T, Albon S, Guinness F, Pemberton J, Clutton-Brock T (1997) Population substructure, local density, and calf winter survival in red deer (Cervus elaphus). Ecology 78:852–863CrossRefGoogle Scholar
  15. Darmon G, Calenge C, Loison A, Maillard D, Jullien J-M (2007) Social and spatial patterns determine the population structure and colonization processes in mouflon. Can J Zool 85:634–643CrossRefGoogle Scholar
  16. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStatGoogle Scholar
  17. Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192CrossRefGoogle Scholar
  18. du Toit JT (2010) Addressing the mismatches between livestock production and wildlife conservation across spatio-temporal scales and institutional levels. In: Wild rangelands: conserving wildlife while maintaining livestock in semi-arid ecosystems. p. 30Google Scholar
  19. Durant SM, Craft ME, Hilborn R, Bashir S, Hando J, Thomas L (2011) Long-term trends in carnivore abundance using distance sampling in Serengeti National Park, Tanzania. J Appl Ecol 48:1490–1500. CrossRefGoogle Scholar
  20. ESRI (2007) GIS and mapping software.
  21. Fall MW, Jackson WB (2002) The tools and techniques of wildlife damage management—changing needs: an introduction. Int Biodeterior Biodegrad 49:87–91CrossRefGoogle Scholar
  22. Franklin WL (1982) Biology, ecology, and relationship to man of the South American camelids. In: Mammalian biology in South America. 6:457–489Google Scholar
  23. Franklin WL (1983) Contrasting socioecologies of South America’s wild camelids: the vicuña and guanaco. In: JFK E, Kleiman DG (eds) Advances in the study of mammalian behavior. The American Society of Mammalogists, USA, pp 573–629Google Scholar
  24. Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, PrincetonGoogle Scholar
  25. Gaillard JM, Hewison AJ, Kjellander P, Pettorelli N, Bonenfant C, Van Moorter B, Liberg O, Andren H, Van Laere G, Klein F, Angibault JM (2008) Population density and sex do not influence fine-scale natal dispersal in roe deer. Proc R Soc Lond B Biol Sci 275:2025–2030CrossRefGoogle Scholar
  26. Gallardo G, Nuñez A, Pacheco LF (2010) Line transects as an alternative to estimate vicuna (Vicugna vicugna) abundance: case study at the Sajama National Park, Ecol Bolivia-Rev 45(1):64–72Google Scholar
  27. González BA, Palma RE, Zapata B, Marín JC (2006) Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mammal Rev 36:157–178. CrossRefGoogle Scholar
  28. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  29. Gurd DB, Nudds TD, Rivard DH (2001) Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv Biol 15:1355–1363CrossRefGoogle Scholar
  30. Hansen AJ, DeFries R (2007) Ecological mechanisms linking protected areas to surrounding lands. Ecol Appl 17:974–988. CrossRefPubMedGoogle Scholar
  31. Hema EM, Di Vittorio M, Barnes RFW, Guenda W, Luiselli L (2017) Detection of interannual population trends in seven herbivores from a west African savannah: a comparison between dung counts and direct counts of individuals. Afr J Ecol.
  32. Hernández F, Corcoran D, Graells G, RÕos C, Downey MC (2017) Rancher perspectives of a livestock-wildlife conflict in Southern Chile. Rangelands 39:56–63CrossRefGoogle Scholar
  33. Hopcraft JGC, Olff H, Sinclair ARE (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25:119–128CrossRefPubMedGoogle Scholar
  34. Howard PC (1986) Spatial organization of common reedbuck with special reference to the role of juvenile dispersal in population regulation. Afr J Ecol 24:155–171. CrossRefGoogle Scholar
  35. Iranzo EC, Traba J, Acebes P, González BA, Mata C, Estades CF, Malo JE (2013) Niche segregation between wild and domestic herbivores in Chilean Patagonia. PLoS One 8:e59326. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jung TS (2017) Extralimital movements of reintroduced bison (Bison bison): implications for potential range expansion and human-wildlife conflict. Eur J Wildl Res 63:35. CrossRefGoogle Scholar
  37. Kjellander P, Hewison AJM, Liberg O, Angibault JM, Bideau E, Cargnelutti B (2004) Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L.): a comparison of two long-term studies. Oecologia 139:478–485CrossRefPubMedGoogle Scholar
  38. Kowalczyk R, Krasińska M, Kamiński T, Górny M, Struś P, Hofman-Kamińska E, Krasiński ZA (2013) Movements of European bison (Bison bonasus) beyond the Białowieża Forest (NE Poland): range expansion or partial migrations? Acta Theriol 58:391–401CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lambertucci SA, Speziale KL (2011) Protecting invaders for profit. Science 332:35–35CrossRefPubMedGoogle Scholar
  40. Lawson Handley L, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578CrossRefPubMedGoogle Scholar
  41. Madhusudan M (2004) Recovery of wild large herbivores following livestock decline in a tropical Indian wildlife reserve. J Appl Ecol 41:858–869CrossRefGoogle Scholar
  42. Malo J, González B, Traba J, Estades C, Acebes P, Galaz J, Zapata B (2009) Modulation of guanaco (Lama guanicoe) flight behaviour by tourist use in Torres del Paine region. In: 10th international mammalogical congress, Mendoza, Argentina. pp 134–135Google Scholar
  43. Marino A, Rodríguez V, Pazos G (2016) Resource-defense polygyny and self-limitation of population density in free-ranging guanacos. Behav Ecol 27:757–765CrossRefGoogle Scholar
  44. Márquez AL, Real R, Olivero J, Estrada A (2011) Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim Chang 108:135–157CrossRefGoogle Scholar
  45. McLoughlin PD, Boyce MS, Coulson T, Clutton-Brock T (2006) Lifetime reproductive success and density-dependent, multi-variable resource selection. Proc R Soc Lond B Biol Sci 273:1449–1454CrossRefGoogle Scholar
  46. Mishra C, Van Wieren SE, Ketner P, Heitkönig IMA, Prins HHT (2004) Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. J Appl Ecol 41:344–354. CrossRefGoogle Scholar
  47. Olson KA, Fuller TK, Schaller GB, Odonkhuu D, Murray MG (2005) Estimating the population density of Mongolian gazelles Procapra gutturosa by driving long-distance transects. Oryx 39:164–169. CrossRefGoogle Scholar
  48. Ortega IM, Franklin WL (1995) Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev Chil Hist Nat 68:489–500Google Scholar
  49. Pedrana J, Rodríguez A, Bustamante J, Travaini A, Zanón Martínez JI (2009) Failure to estimate reliable sex ratios of guanaco from road-survey data. Can J Zool 87:886–894CrossRefGoogle Scholar
  50. Pettorelli N, Gaillard JM, Duncan P, Maillard D, Van Laere G, Delorme D (2003) Age and density modify the effects of habitat quality on survival and movements of roe deer. Ecology 84:3307–3316CrossRefGoogle Scholar
  51. Pisano E (1974) Estudio ecológico de la región continental sur del área andino patagónica. II Contribución a la fitogeografía de la zona del Parque Nacional Torres del Paine. vol 5Google Scholar
  52. Plumb GE, White PJ, Coughenour MB, Wallen RL (2009) Carrying capacity, migration, and dispersal in Yellowstone bison. Biol Conserv 142:2377–2387. CrossRefGoogle Scholar
  53. Puig S (1995) Técnicas para el manejo del guanaco. IUCN, Buenos AiresGoogle Scholar
  54. Puig S, Videla F (2007) Distribución, densidades y estado de conservación de los camélidos. In: Martinez Carretero E (ed) Diversidad biológica y cultural de los altos Andes Centrales de Argentina. Editorial Fundación Universidad Nacional de San Juan, Argentina, p 198Google Scholar
  55. Puig S, Videla F, Cona MI, Roig VG (2008) Habitat use-by guanacos (Lama guanicoe, Camelidae) in northern Patagonia (Mendoza, Argentina). Stud Neotropical Fauna Environ 43:1–9. CrossRefGoogle Scholar
  56. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  57. Rey A, Carmanchahi PD, Puig S, Guichón ML (2009) Densidad, estructura social, actividad y manejo de guanacos silvestres (Lama guanicoe) en el sur del Neuquén, Argentina. Mastozool Neotropical 16:389–401Google Scholar
  58. Rey A, Novaro AJ, Guichón ML (2012) Guanaco (Lama guanicoe) mortality by entanglement in wire fences. J Nat Conserv 20:280–283CrossRefGoogle Scholar
  59. Sarno RJ, Franklin WL (1999) Population density and annual variation in birth mass of guanacos in southern Chile. J Mammal 80:1158–1162CrossRefGoogle Scholar
  60. Sarno RJ, Bank MS, Stern HS, Franklin WL (2003) Forced dispersal of juvenile guanacos (Lama guanicoe): causes, variation, and fates of individuals dispersing at different times. Behav Ecol Sociobiol 54:22–29CrossRefGoogle Scholar
  61. Schroeder NM, Matteucci SD, Moreno PG, Gregorio P, Ovejero R, Taraborelli P, Carmanchahi PD (2014) Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS One 9:e85960CrossRefPubMedPubMedCentralGoogle Scholar
  62. Simonetti JA (1995) Wildlife conservation outside parks is a disease-mediated task. Conserv Biol 9:454–456. CrossRefGoogle Scholar
  63. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218CrossRefPubMedGoogle Scholar
  64. Sutherland WJ, Norris K (2002) Behavioural models of population growth rates: implications for conservation and prediction. Philos Trans R Soc Lond Ser B Biol Sci 357:1273–1284CrossRefGoogle Scholar
  65. Taraborelli P, Gregorio P, Moreno P, Novaro A, Carmanchahi P (2012) Cooperative vigilance: the guanaco's (Lama guanicoe) key antipredator mechanism. Behav Process 91:82–89CrossRefGoogle Scholar
  66. Thomas L et al (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Traba J, Iranzo EC, Carmona CP, Malo JE (2017) Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos 126:1400–1409.
  68. Travaini A, Zapata SC, Bustamante J, Pedrana J, Zanón JI, Rodríguez A (2015) Guanaco abundance and monitoring in Southern Patagonia: distance sampling reveals substantially greater numbers than previously reported. Zool Stud 54:23CrossRefGoogle Scholar
  69. Van Dyke FG, Brocke RH, Shaw HG (1986) Use of road track counts as indices of mountain lion presence. J Wildl Manag 1:102–109CrossRefGoogle Scholar
  70. Van Sickle WD, Lindzey FG (1992) Evaluation of road track surveys for cougars (Felis concolor). Great Basin Nat 1:232–236Google Scholar
  71. Vidal OJ, Reif A (2011) Effect of a tourist-ignited wildfire on Nothofagus pumilio forests at Torres del Paine biosphere reserve, Chile (Southern Patagonia). Bosque 32:64–76CrossRefGoogle Scholar
  72. Vincent JP, Gaillard JM, Bideau E (1991) Kilometric index as biological indicator for monitoring forest roe deer populations. Acta Theriol 36:315–328CrossRefGoogle Scholar
  73. White P, Gower CN, Davis TL, Sheldon JW, White JR (2012) Group dynamics of Yellowstone pronghorn. J Mammal 93:1129–1138CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2017

Authors and Affiliations

  1. 1.Instituto de Ciencias de la Tierra y Ambientales de La Pampa INCITAP-CONICET Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
  2. 2.Terrestrial Ecology Group-TEG, Departamento de Ecología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Facultad de Ciencias Forestales y de Conservación de la NaturalezaUniversidad de ChileLa PintanaChile

Personalised recommendations