Estimating occupancy of the Vulnerable northern tiger cat Leopardus tigrinus in Caatinga drylands

An Erratum to this article was published on 04 October 2017

This article has been updated

Abstract

Understanding the distribution and habitat preference of threatened species is essential for their conservation. We conducted the first systematic camera trap survey of the Vulnerable northern tiger cat Leopardus tigrinus in Caatinga drylands (Brazil) and tested how its occupancy and detectability patterns are affected by environmental and anthropogenic factors. Species detection-non-detection data, obtained by 7263 camera-days distributed throughout 187 sampling sites on ten Caatinga landscapes, were used to evaluate species detectability and occupancy according to ten environmental and anthropogenic predictors. We built seven detection models and 30 hierarchical occupancy models that have been ranked based on the Akaike Information Criterion. The estimated average occupancy of 0.46 was 38% higher than the naïve occupancy rate (0.34). Species occupancy was higher in locations with greater forest cover and at greater distance to agrarian settlements. Hunting and persecution of northern tiger cats by residents and a possible reduction of their natural prey by hunting may explain the result. On the contrary, more forested environments may represent higher-quality habitats providing greater availability of prey and shelters and protection against anthropogenic threats and extreme temperatures. These results improve the understanding of the ecology of a threatened and poorly known small cat, and they can guide conservation actions such as the creation of dense forest protected areas and provide information for mitigating human-carnivore conflict.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history

  • 04 October 2017

    The original version of this article, unfortunately, contained an error.

References

  1. Antongiovanni M (2017) Fragmentação, Conservação e Restauração da Caatinga. PhD thesis, Universidade do Rio Grande do Norte, Brazil

  2. Ab’Sáber AN (1974) O domínio morfoclimático semi-árido das caatingas brasileiras. Geomorfologia 43:1–36

    Google Scholar 

  3. Alves RRN, Gonçalves MBR, Vieira WLS (2012) Caça, uso e conservação de vertebrados no semiárido Brasileiro. Trop Conserv Sci 5:394–416 http://www.tropicalconservationscience.org

    Article  Google Scholar 

  4. Alves RRN, Mendonça LET, Confessor MVA, Vieira WLS, Lopez LCS (2009) Hunting strategies used in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed 5:1–16. doi:10.1186/1746-4269-5-12

    Article  PubMed  PubMed Central  Google Scholar 

  5. Astete S, Marinho-Filho J, Machado RB, Zimbres B, Jácomo ATA, Sollmann R, Tôrres NM, Silveira L (2017) Living in extreme environments: modelling habitat suitability for jaguars, pumas, and their prey in a semiarid habitat. J Mammal 98:464–474. doi:10.1093/jmammal/gyw184

    Google Scholar 

  6. Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127. doi:10.1016/j.apgeog.2015.01.017

    Article  Google Scholar 

  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York, USA

    Google Scholar 

  8. Cardillo M, Puvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2:909–914. doi:10.1371/journal.pbio.0020197

    CAS  Article  Google Scholar 

  9. Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol 9:559–568 http://www.jstor.org/stable/2386610

    Article  Google Scholar 

  10. CITES (2015) Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendices I, II and III. http://www.cites.org/eng/app/appendices.php. Accessed 25 Aug 2016

  11. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566. doi:10.1038/23028

    CAS  Article  Google Scholar 

  12. De Paula RC, Campos CB, Oliveira TG (2012) Red List assessment for the jaguar in the Caatinga biome. Cat News 7:19–24

    Google Scholar 

  13. Delciellos AC (2016) Mammals of four Caatinga areas in northeastern Brazil: inventory, species biology, and community structure. Check List 12:1916. doi:10.15560/12.3.1916

    Article  Google Scholar 

  14. De Wan AA, Sullivan PJ, Lembo AJ, Smith CR, Maerz JC, Lassoie JP, Richmond ME (2009) Using occupancy models of forest breeding birds to prioritize conservation planning. Biol Conserv 142:982–991. doi:10.1016/j.biocon.2008.12.032

    Article  Google Scholar 

  15. Di Bitetti MS, Paviolo A, De Angelo C (2006) Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J Zool 270:153–163. doi:10.1111/j.1469-7998.2006.00102.x

    Google Scholar 

  16. Feijó A, Langguth A (2013) Mamíferos de Médio e Grande Porte do Nordeste do Brasil: Distribuição e Taxonomia, com Descrição de Novas Espécies. Rev Nordestina Biol 22:3–225

    Google Scholar 

  17. Fernandes-Ferreira H (2014) A Caça no Brasil. PhD thesis, Universidade Federal da Paraíba, Brazil

  18. Freitas RR, Rocha PLB, Simões-Lopes PC (2008) Habitat structure and small mammals abundances in one semiarid landscape in the Brazilian Caatinga. Rev Bras Zool 22:119–129. doi:10.1590/S0101-81752005000100015

    Article  Google Scholar 

  19. Gálvez N, Hernández F, Laker J, Gilabert H, Pepitas R, Bonacic C, Gimona A, Hester D, Macdonald W (2013) Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47:251–258. doi:10.1017/S0030605312000099

    Article  Google Scholar 

  20. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    CAS  Article  PubMed  Google Scholar 

  21. Hines JE (2006) Presence 2: software to estimate patch occupancy and related parameters. U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland. http://www.mbr-pwrc.usgs.gov/software/presence.html

  22. Konecny MJ (1987) Food habits and energetics of feral house cats in the Galápagos Islands. Oikos 50:24–32. doi:10.2307/3565398

    Article  Google Scholar 

  23. Leal IR, Silva JMC, Tabarelli M, Lacher-Jr TR (2005) Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv Biol 19:701–706. doi:10.1111/j.1523-1739.2005.00703.x

    Article  Google Scholar 

  24. Linkie M, Dinata Y, Nugroho A, Haidir IA (2007) Estimating occupancy of a data deficient mammalian species living in tropical rainforests: sun bears in the Kerinci Seblat region, Sumatra. Biol Conserv 137:20–27. doi:10.1016/j.biocon.2007.01.016

    Article  Google Scholar 

  25. Long RA, Donovan TM, Mackay P, Zielinski WJ, Buzas JS (2011) Predicting carnivore occurrence with noninvasive surveys and occupancy modelling. Landsc Ecol 26:327–340. doi:10.1007/s10980-010-9547-1

    Article  Google Scholar 

  26. MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Envir St 9:300–318. doi:10.1198/108571104X3361

    Article  Google Scholar 

  27. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255. doi:10.1890/0012-9658(2002)083[B2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  28. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego

    Google Scholar 

  29. Marinho FP, Mazzochini GG, Manhães AP, Weisser WW, Ganade G (2016) Effects of past and present land use on caatinga cover and regeneration in a tropical dryland forest. J Arid Environ 132:26–33. doi:10.1016/j.jaridenv.2016.04.006

    Article  Google Scholar 

  30. Marinho PH, Feijó A, Galivan AS, Moura EO, Venticinque EM (2017) First records of Ocelot Leopardus pardalis (Linnaeus, 1758) (Carnivora: Felidae) from Rio Grande do Norte, northeastern Brazil. Check List 13:2087. doi:10.15560/13.2.2087

    Article  Google Scholar 

  31. Mendonça LET, Souto CM, Andrelino LL, Souto WMS, Vieira WLS, Alves RRN (2011) Conflitos entre pessoas e animais silvestres no Semiárido paraibano e suas implicações para conservação. Sitientibus série Cienc Biol 11:185–199

    Article  Google Scholar 

  32. Miller DAW, Grant EHC (2015) Estimating occupancy dynamics for large-scale monitoring networks: amphibian breeding occupancy across protected areas in the northeast United States. Ecol Evol 5:4735–4746. doi:10.1002/ece3.1679

    Article  PubMed  PubMed Central  Google Scholar 

  33. MMA (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite - monitoramento do bioma Caatinga 2008–2009. Ministério do Meio Ambiente, IBAMA, Brasília. http://www.mma.gov.br/estruturas/sbf_chm_rbbio/_arquivos/relatorio_tecnico_caatinga_2008_2009_72.pdf

  34. MMA (2014) Listas das Espécies da Fauna Brasileira Ameaçadas de Extinção vigentes. Ministério do Meio Ambiente. http://www.mma.gov.br/. Accessed 17 Dezember 2014

  35. MMA (2016) Áreas Prioritárias para a Conservação, Utilização Sustentável e Repartição de Benefícios da Biodiversidade do Cerrado, do Pantanal e da Caatinga Ministério do Meio Ambiente. http://wwwmmagovbr/biodiversidade/biodiversidade-brasileira/%C3%A1reas-priorit%C3%A1rias/item/10724. Accessed 05 Sept 2016

  36. O’Connell AF, Bailey LL (2011) Inference for occupancy and occupancy dynamics. In: O’Connel AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology: methods and analyses. Springer, Tokyo Dordrecht Heidelberg London New York, pp 191–206

    Google Scholar 

  37. Oliveira TG, Tortato MA, Almeida LB, Campos CB, Beisiegel BM (2013) Avaliação do risco de extinção do gato-do-mato Leopardus tigrinus (Schreber, 1775) no Brasil. Biodiv Brasil 3:56–65

    Google Scholar 

  38. Oliveira TG, Tortato MA, Silveira L, Kasper CB, Mazim FD, Jácomo ATA, Lucherini M, Soares JBG, Marques RV, Sunquist M (2010) Ocelot ecology and its effect on the small-felid guild in the lowland Neotropics. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of the wild felids. Oxford University Press, New York, pp 559–580

    Google Scholar 

  39. Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsinhn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Guadagnin DL, Lorenzen K, Jacobi CM, Weisser WW, Pillar VD (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460. doi:10.1111/ddi.12380

    Article  Google Scholar 

  40. Payan E, Oliveira T (2016) Leopardus tigrinus. The IUCN Red List of Threatened Species 2016:e.T54012637A50653881 doi:10.2305/IUCN.UK.2016-2.RLTS.T54012637A50653881.en. Accessed 17 Nov 2016

  41. Pereira JA, Fracassi NG, Rago V, Ferreyra H, Marull A, Mcaloose D, Uhart MM (2010) Causes of mortality in a Geoffroy’s cat population—a long-term survey using diverse recording methods. Eur J Wildlife Res 56:939–942. doi:10.1007/s10344-010-0423-8

    Article  Google Scholar 

  42. Pia MV, Renison D, Mangeaud A, De Angelo C, Haro JG (2013) Occurrence of top carnivores in relation to land protection status, human settlements and rock outcrops in the high mountains of central Argentina. J Arid Environ 91:31–37. doi:10.1016/j.jaridenv.2012.11.004

    Article  Google Scholar 

  43. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  44. Santos AM, Tabarelli M (2002) Distance from roads and cities as a predictor of habitat loss and fragmentation in the Caatinga vegetation of Brazil. Braz J Biol 62:897–905. doi:10.1590/S1519-69842002000500020

    CAS  Article  PubMed  Google Scholar 

  45. Sales RFD, Ribeiro LB, Jorge JSS, Freire EMX (2011) Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae) in a Caatinga area of northeastern Brazil. Phyllomedusa 10:165–176. doi:10.11606/issn.2316-9079.v10i2p165-176

    Article  Google Scholar 

  46. Sarmento PB, Cruz J, Eira C, Fonseca C (2011) Modelling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. Eur J Wildlife Res 57:119–131. doi:10.1007/s10344-010-0405-x

    Article  Google Scholar 

  47. Schneider M, Peres CA (2015) Environmental costs of government-sponsored agrarian settlements in Brazilian Amazonia. PLoS One 10:e0134016. doi:10.1371/journal.pone.0134016

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sousa MA, Langguth A, Gimenez EA (2004) Mamíferos dos Brejos de Altitude Paraíba e Pernambuco. In: Porto KC, Cabral JJP, Tabarelli M (eds) Brejos de altitude em Pernambuco e Paraíba: história natural, ecologia e conservação. Ministério do Meio Ambiente, Brasília, pp 229–254

    Google Scholar 

  49. Tobler MW (2007) Camera base version 1.6. Atrium biodiversity information system. http://www.atrium-biodiversity.org/tools/camerabase/

  50. Trigo TC, Schneider A, Oliveira TG, Lehugeur LM, Silveira L, Freitas LM, Eizirik E (2013) Molecular data reveal complex hybridization and a cryptic species of neotropical wild cat. Curr Biol 23:2528–2533. doi:10.1016/j.cub.2013.10.046

    CAS  Article  PubMed  Google Scholar 

  51. Velloso AL, Sampaio EVSB, Pareyn FGC (2002) Ecorregiões Propostas para o Bioma Caatinga. Associação Plantas do Nordeste, Instituto de Conservação Ambiental, The Nature Conservancy do Brasil, Recife, Brazil

  52. Zanin M, Palomares FP, Brito D (2015) What we (don’t) know about the effects of habitat loss and fragmentation on felids. Oryx 49:96–106. doi:10.1017/S0030605313001609

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Wildlife Conservation Society—Brazil and the Centro de Pesquisas Ambientais do Nordeste (CEPAN) for the partnership; Tropical Conservation Act (TFCA) through Brazilian Biodiversity Fund (Call 04/2012) and Fundação Grupo Boticário de Proteção à Natureza (Project 0982-20132) for financial support; A.F. Oliveira, D. Valdenor, M.C. Bezerra, A. Galvão, F.P. Marinho, W. Pessoa, and T.G. Oliveira for assistance in the field or in the data analysis. We are immensely grateful to J.B. de Lima (seu João) and other local residents of the Caatinga for their hospitality and essential field assistance. We also thank M.P. Pinto and S. Astete, two anonymous reviewers, and associate editor for their valuable suggestions. PHM (130648/2013-2), CRF (305304/2013-5), and EMV (309458/2013-7) were funded by CNPq (Brazil) and, DB and MAF were funded by CAPES (Brazil).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Henrique Marinho.

Additional information

The original version of this article was revised: In the “Results” section originally reading “...significant lack of fit (test statistic = 144.83, p = 0.29)”, this should instead have read “...significant lack of fit “(c ^ = 0.95; Test statistic = 144.83, p = 0.29)”. [bold text used to highlight problem area]

An erratum to this article is available at https://doi.org/10.1007/s13364-017-0335-z.

Communicated by: Krzysztof Schmidt

Electronic supplementary material

ESM 1

(DOCX 795 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marinho, P.H., Bezerra, D., Antongiovanni, M. et al. Estimating occupancy of the Vulnerable northern tiger cat Leopardus tigrinus in Caatinga drylands. Mamm Res 63, 33–42 (2018). https://doi.org/10.1007/s13364-017-0330-4

Download citation

Keywords

  • Camera traps
  • Small felid conservation
  • Imperfect detection
  • Occupancy models
  • Semi-arid climate
  • Tropical dry forests