Mammal Research

, Volume 62, Issue 2, pp 189–193 | Cite as

Pollen movement by the bat Artibeus jamaicensis (Chiroptera) in an agricultural landscape in the Yucatan Peninsula, Mexico

  • M. Cristina MacSwiney G.Email author
  • Beatríz Bolívar-Cimé
  • Rita Alfaro-Bates
  • J. Javier Ortíz-Díaz
  • Frank M. Clarke
  • Paul A. Racey
Short Communication


Artibeus jamaicensis is a medium-sized frugivorous microchiropteran bat that complements its diet with nectar and pollen during the dry season. We investigated which species of pollen are carried by A. jamaicensis in order to determine its potential role as a plant pollinator in the northern Yucatan Peninsula. We collected pollen from the fur of 192 individuals throughout the year from April 2004 to March 2005. We recorded pollen from nine plant species of eight families and found five unidentified pollen types, with the highest pollen species richness recorded in June. A. jamaicensis moved pollen of Erythrina standleyana and Mimosa bahamensis, which have not hitherto been reported as visited by this species. The most abundant pollen in the samples was found to be that of three tree species: Ceiba pentandra, C. aesculifolia and Lysiloma latisiliquum. Very few samples contained pollen in the rainy season, when the bats fed mainly on fruits. A. jamaicensis can fly several kilometres among foraging locations and dispersed large amounts of pollen from tree species growing near cenotes as well as those not present at cenotes but occurring in other forest fragments, highlighting its importance as a pollen vector among forest fragments in the largely deforested landscape of the Yucatan Peninsula, helping to reduce the negative effects of forest fragmentation. Ceiba appears to benefit from the role of A. jamaicensis as a pollen vector, and the species play an important ecological role in the Yucatán landscape, supplying shade, nectar and fruit for wildlife.


Ceiba pentandra Cenotes Chiroptera Pastureland Pollinator 



This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACyT 168790), Secretaría de Educación, México and the University of Aberdeen. We thank P. Vilchis, C. Gelati, E. Christie, J.M. Pech and many other field assistants for their invaluable help. Lilia Ruiz helped with editing the figure. Keith MacMillan and two anonymous reviewers made useful comments to the manuscript.


  1. Baker HG, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Isr J Bot 39:157–166Google Scholar
  2. Bolívar-Cimé BS, Laborde J, MacSwiney GMC, Muñoz-Robles C, Tun-Garrido J (2013) Response of phytophagous bats to patch quality and landscape attributes in fragmented tropical semi-deciduous forest. Acta Chiropt 15:399–409. doi: 10.3161/150811013X679026 CrossRefGoogle Scholar
  3. Bumrungsri S, Lang D, Harrower C, Sripaoraya E, Kitpipit K, Racey PA (2013) The dawn bat, Eonycteris spelaea Dobson (Chiroptera: Pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropt 15:95–104 CrossRefGoogle Scholar
  4. Colunga-Garcíamarín P, Coello-Coello J, Eguiarte LE, Piñero D (1999) Isozymatic variation and phylogenetic relationships between Henequén (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Am J Bot 86:115–123CrossRefPubMedGoogle Scholar
  5. Erdtman G (1960) The acetolysis method. A revised description. Sven Bot Tidskr 54:561–564Google Scholar
  6. Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043. doi: 10.1093/aob/mcp197 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Frick WF, Shipley JR, Kelly JF, Heady PA III, May KM (2014) Seasonal reliance on nectar by an insectivorous bat revealed by stable isotopes. Oecologia 174:55–65. doi: 10.1007/s00442-013-2771-z CrossRefPubMedGoogle Scholar
  8. Gentry AH (1974) Flower phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68. doi: 10.2307/2989698 CrossRefGoogle Scholar
  9. Heithaus R, Fleming T, Opler P (1975) Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology 56:841–854. doi: 10.2307/1936295 CrossRefGoogle Scholar
  10. Herrerias-Diego Y, Quesada M, Stoner KE, Lobo JA (2006) Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia. Conserv Biol 20:1111–1120. doi: 10.1111/j.1523-1739.2006.00370.x CrossRefPubMedGoogle Scholar
  11. INEGI (Instituto Nacional de Estadística, Geografía e Informática) (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Buctzotz, Yucatán. Clave geoestadística 31006. Downloaded on 18 July 2016
  12. Korine C, Kalko EKV (2005) Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echolocation call design and olfaction. Behav Ecol Sociobiol 59:12–23. doi: 10.1007/s00265-005-0003-1 CrossRefGoogle Scholar
  13. Lobo JA, Quesada M, Stoner KE, Fuchs EJ, Herrerías-Diego Y, Rojas J, Saborío G (2003) Factors affecting phenological patterns of bombacaceous trees in seasonal forest in Costa Rica and Mexico. Am J Bot 90:1054–1063. doi: 10.3732/ajb.90.7.1054 CrossRefPubMedGoogle Scholar
  14. Lobo JA, Quesada M, Stoner KE (2005) Effects of pollination by bats on the mating system of Ceiba pentandra (Bombacaceae) populations in two tropical zones in Costa Rica. Am J Bot 92:370–376. doi: 10.3732/ajb.92.2.370 CrossRefPubMedGoogle Scholar
  15. Lobova TA, Geiselman CK, Mori SA (2009) Seed dispersal by bats in the Neotropics. Memoirs of The New York Botanical Garden Volume 101. The New York Botanical Garden Press, New York.Google Scholar
  16. Loveaux J, Maurizio A, Vorwohl G (1978) Methods of melissopalynology. Bee World 5:139–157CrossRefGoogle Scholar
  17. MacSwiney GMC, Vilchis LP, Clarke FM, Racey PA (2007) The importance of cenotes in conserving bat assemblages in the Yucatan, Mexico. Biol Conserv 136:499–509 CrossRefGoogle Scholar
  18. Morrison DW (1978) Influence of habitat on the foraging distances of the fruit bat, Artibeus jamaicensis. J Mammal 59:622–624CrossRefGoogle Scholar
  19. Muchhala N, Thomson JD (2010) Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production. Am Nat 175:717–726. doi: 10.1086/652473 CrossRefPubMedGoogle Scholar
  20. Ortega J, Castro-Arellano I (2001) Artibeus jamaicensis. Mamm Species 662:1–9<0001:AJ>2.0.CO;2 CrossRefGoogle Scholar
  21. Palacios-Chávez R, Ludlow-Wierchers B, Villanueva R (1991) Flora palinológica de la Reserva de Sian Ka’an, Quintana Roo, México. Centro de Investigaciones de Quintana Roo, MéxicoGoogle Scholar
  22. Pennington TD, Sarukhán J (1998) Árboles tropicales de México. Universidad Nacional Autónoma de México. Fondo de Cultura Económica, MéxicoGoogle Scholar
  23. Ruiz-Velásquez E, Andrés-Reyes JV, Santos-Moreno A (2014) Registros notables de tres especies de mamíferos del estado de Oaxaca, México. Rev Mex Biodiv 85:325–327. doi: 10.7550/rmb.33961 CrossRefGoogle Scholar
  24. Standley PC, Steyermare JA, Williams LO (1946-1977) Flora de Guatemala. Field Bot 24:1–13Google Scholar
  25. Stewart AB, Dudash MR (2015) Differential pollen placement on an Old World nectar bat increases pollination efficiency. Ann Bot. doi: 10.1093/aob/mcv163 Google Scholar
  26. Tschapka M, Dressler S (2002) Chiropterophily: on bat-flowers and flower bats. Curtis’s Bot Mag 19:114–125CrossRefGoogle Scholar
  27. Tzab-Hernández LA (2012) Variación estacional de murciélagos frugívoros y polinectarívoros y transporte de recursos polínicos en selvas de la Reserva de la Biosfera de Ria Lagartos, Yucatán, México. Universidad Autónoma de Yucatán, Undergraduate Thesis. Campus de Ciencias Biológicas y AgropecuariasGoogle Scholar
  28. Vance C, Geoghegan J (2002) Temporal and spatial modelling of tropical deforestation: a survival analysis linking satellite and household survey data. Agr Econ 27:317–332. doi: 10.1016/S0169-5150(02)00074-9 CrossRefGoogle Scholar
  29. Vogel S, Lopes AV, Machado IC (2005) Bat pollination in the NE Brazilian endemic Mimosa lewisii: an unusual case and first report for the genus. Taxon 54:693–700CrossRefGoogle Scholar
  30. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi: 10.1016/0169-5347(96)10045-8 CrossRefPubMedGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2017

Authors and Affiliations

  • M. Cristina MacSwiney G.
    • 1
    • 2
    Email author
  • Beatríz Bolívar-Cimé
    • 3
    • 4
  • Rita Alfaro-Bates
    • 3
  • J. Javier Ortíz-Díaz
    • 3
  • Frank M. Clarke
    • 2
  • Paul A. Racey
    • 2
  1. 1.Centro de Investigaciones TropicalesUniversidad VeracruzanaXalapaMéxico
  2. 2.School of Biological SciencesUniversity of AberdeenAberdeenUK
  3. 3.Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico
  4. 4.Instituto de Investigaciones ForestalesUniversidad VeracruzanaXalapaMéxico

Personalised recommendations