Skip to main content

Status assessment of Eurasian lynx in Latvia linking genetics and demography—a growing population or a source–sink process?

Abstract

The Eurasian lynx is managed as a game species in Latvia. A variety of demographic parameters were used to assess the current status of the Latvian lynx population and recruitment after annual harvest. Population age–gender structure and female prenatal fecundity were determined in 530 legally hunted animals over a 9-year period. Average prenatal fecundity was 3.2 ± 0.1, and evidence of reproduction was found in 87 % of the examined adult females. We found a disproportionally low number of 1- and 2-year-old lynx in the hunting bags and therefore constructed an age–gender pyramid, adjusting the survival curves to the proportions of the remaining age classes. Two hundred and eighty-eight tissue samples were analysed using 12 autosomal microsatellite loci. Groups of related individuals were identified using a group approach and supported by pairwise relationship analysis. Thirteen potential maternal–offspring relationship groups and 30 related groups of lynx individuals based on potential full-sib and half-sib relationships between the individuals within the research period were identified. Evidence from this study shows that the population is not only stable but also likely growing and that there currently appear to be no barriers preventing gene flow. We can conclude that, in general, the lynx population was sustainably maintained. The previous harvest intensity has not obstructed the conservation aim for lynx in Latvia, which is to maintain the population as stable or growing. Combining demographic and molecular analyses, this study reveals relevant reference indices that can be used in future monitoring of the lynx population in Latvia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson Z, Ozolins J, Pupila A, Bagrade G (2003) The East European and Caucasian parts of lynx range (the western group of regions): Latvia. In: Matyushkin YN, Vaisfeld MA (eds) The lynx: regional features of ecology, use and protection. Nauka, Moscow, pp 92–105 (in Russian/English)

  2. Andrén H, Linnell JD, Liberg O, Andersen R, Danell A, Karlsson J, Odden J, Moa PF, Ahlqvist P, Kvam T, Franzén R, Segerström P (2006) Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol Conserv 131(1):23–32

    Article  Google Scholar 

  3. Ansorge H, Schipke R, Zinke O (1997) Population structure of the otter, Lutra lutra. Parameters and model for a Central European region. Z Säugetierkd 62(3):143–151

    Google Scholar 

  4. Baumanis J, Ornicāns A, Stepanova A, Ozoliņš J (2012) Association between roe deer and lynx abundance in Latvia. In: Recent problems of nature use, game biology and fur farming. Proceedings of the International Scientific and Practical Conference, Kirov, VNIIOZ, RAAS, pp 135–136

  5. Boitani L, Alvarez F, Anders O, Andren H, Avanzinelli E et al. (2015) Key actions for large carnivore populations in Europe. Institute of Applied Ecology, Rome, Italy. Report to DG Environment, European Commission, Bruxelles. Contract no. 07.0307/2013/654446/SER/B3

  6. Breitenmoser U, Breitenmoser-Würsten C, Okarma H, Kaphegyi T, Wallmann UK, Müller UM (2000) Action plan for the conservation of the Eurasian lynx (Lynx lynx) in Europe. Nature and Environment no. 112. Council of Europe Publishing, Strasbourg

  7. Breitenmoser-Würsten C, Obexer-Ruff G (2003) Population and conservation genetics of two reintroduced lynx (Lynx lynx) populations in Switzerland—a molecular evaluation 30 years after translocation. Environ Encount 58:51–55

    Google Scholar 

  8. Breitenmoser-Würsten C, Vandel J-M, Zimmermann F, Breitenmoser U (2007) Demography of lynx Lynx lynx in the Jura Mountains. Wildlife Biol 13:381–392

    Article  Google Scholar 

  9. Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346(6216):1517–1519

    CAS  Article  PubMed  Google Scholar 

  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M et al (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170. doi:10.1073/pnas.91.8.3166

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fry FEJ (1949) Statistics of a lake trout fishery. Biometrics 5:26–67

    Article  Google Scholar 

  13. Fry FEJ (1957) Assessment of mortalities by use of virtual population. Proceedings of Joint Scientific Meeting of the ICNAF (International Commission for Northwest Atlantic Fisheries), ICES (International Council for the Exploration of the Sea), and FAO (Food and Agriculture Organization of the Unated Nations) on Fishing Effort, the Effects of Fishing on Resources and the Selectivity of Fishing Gear

  14. Garner A, Rachlow JL, Hicks JF (2004) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19(4):1215–1221

    Article  Google Scholar 

  15. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html.

  16. Gulland JA (1965) Estimation of mortality rates. Annex to Arctic Fisheries Working Group Report, document no. 3. International Council for the Exploration of the Sea, Copenhagen, Denmark

  17. Hellborg L, Walker CW, Rueness EK, Stacy JE, Kojola I, Valdmann H, Vilà C, Zimmermann B, Jakobsen K, Ellegren H (2002) Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conserv Genet 3:97–111

    CAS  Article  Google Scholar 

  18. Jedrzejewski W, Jedrzejewska B, Okarma H, Schmidt K, Bunevich AN, Milkowski L (1996) Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19(2):122–138

    Article  Google Scholar 

  19. Jędrzejewski W, Schmidt K, Okarma H, Kowalczyk R (2002) Movement pattern and home range use by the Eurasian lynx in Białowieża Primeval Forest (Poland). Ann Zool Fenn 39:29–41

    Google Scholar 

  20. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  21. Kaczensky P, Chapron G, von Arx M, Huber D, Andrén H, Linnell J (eds) (2013) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine—in Europe. Part 2—Species Country Reports. LCIE Report, pp 1–201

  22. Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    CAS  Article  Google Scholar 

  23. Kawata Y (2008) Carrying capacities of large carnivores in Latvia. Acta Zoologica Lituanica 18(1):3–9

    Article  Google Scholar 

  24. Kawata Y, Ozoliņš J, Andersone-Lilley Z (2008) An analysis of the game animal population data from Latvia. Balt For 14(1):75–86

    Google Scholar 

  25. Kirkpatrick L (1980) Physiological indices in wildlife management. In: Schemnitz SD (ed) Wildlife management techniques manual. The Wildlife Society, Washington, pp 99–112

    Google Scholar 

  26. Klevezal GA (1988) [Age related structures in mammals for zoological studies]. Nauka, Moskow (in Russian)

  27. Kvam T (1984) Age determination in European lynx Lynx lynx by incremental lines in tooth cementum. Acta Zool Fenn 171:221–223

    Google Scholar 

  28. Kvam T (1991) Reproduction in the European lynx, Lynx lynx. Z Säugetierkd 56(3):146–158

    Google Scholar 

  29. Laiviņš M, Melecis V (2003) Bio-geographical interpretation of climate data in Latvia: multidimensional analysis. Acta Univ Latv 654:7–22

    Google Scholar 

  30. Linnell JD, Broseth H, Odden J, Nilsen EB (2010) Sustainably harvesting a large carnivore? Development of Eurasian lynx populations in Norway during 160 years of shifting policy. Environ Manag 45(5):1142–1154

    Article  Google Scholar 

  31. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Männil P, Kont R (2012) Action plan for conservation and management of large carnivores in Estonia in 2012–2021. Estonian Ministry of the Environment, Tallinn

    Google Scholar 

  33. McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) Conserving the world's biological diversity. IUCN, Gland, Switzerland; WRI, CI, WWF-US, the World Bank, Washington, DC

  34. Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O'Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57(1):9–23

    CAS  Article  PubMed  Google Scholar 

  35. Nilsen EB, Brøseth H, Odden J, Linnell JD (2012a) Quota hunting of Eurasian lynx in Norway: patterns of hunter selection, hunter efficiency and monitoring accuracy. Eur J Wildl Res 58(1):325–333

  36. Nilsen EB, Linnell JDC, Odden J, Samelius G, Andrén H (2012b) Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol 57:217–223

  37. Ozoliņš J (2002) Management plan for the Eurasian lynx (Lynx lynx) in Latvia. Latvian State Forestry Research Institute “Silava” and State Forest Service of the Ministry of Agriculture, Salaspils

  38. Ozoliņš J, Bagrade G, Ornicāns A, Pupila A, Vaiders A (2007) Action plan for the conservation of Eurasian lynx (Lynx lynx) in Latvia. Latvian State Forest Research Institute “Silava”, Salaspils

  39. Ozoliņš J, Pupila A, Ornicāns A, Bagrade G (2008) Economic, social and cultural aspects in biodiversity conservation. In: Opermanis O, Whitelaw G (eds) Lynx management in Latvia: population control or sport hunting. Press of the University of Latvia, Riga, pp 59–72

    Google Scholar 

  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  41. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in effective size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502

    Article  Google Scholar 

  43. Ratkiewicz M, Matosiuk M, Kowalczyk R, Konopiński MK, Okarma H, Ozolins J, Männil P, Ornicans A, Schmidt K (2012) High levels of population differentiation in Eurasian lynx at the edge of the species’ western range in Europe revealed by mitochondrial DNA analyses. Anim Conserv 15:603–612

    Article  Google Scholar 

  44. Ratkiewicz M, Matosiuk M, Saveljev AP, Sidorovich V, Ozolins J, Männil P, Balciauskas L, Kojola I, Okarma H, Kowalczyk R, Schmidt K (2014) Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: the Eurasian lynx. PLoS One 9(12):e115160. doi:10.1371/journal.pone.0115160

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rueness EK, Jorde PE, Hellborg L, Stenseth NC, Ellegren H, Jakobsen KS (2003) Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Mol Ecol 12(10):2623–2633

    CAS  Article  PubMed  Google Scholar 

  46. Rueness EK, Naidenko S, Trosvik P, Stenseth NC (2014) Large-scale genetic structuring of a widely distributed carnivore—the Eurasian lynx (Lynx lynx). PLoS One 9(4):e93675

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saether BE, Engen S, Odden J, Linnell JDC, Grøtan V, Andrén H (2010) Sustainable harvest strategies for age-structured Eurasian lynx populations: the use of reproductive value. Biol Conserv 143:1970–1979

    Article  Google Scholar 

  48. Samelius G, Andrén H, Liberg O, Linnell JDC, Odden J, Ahlqvist P, Segerström P, Sköld K (2011) Spatial and temporal variation in natal dispersal by Eurasian lynx in Scandinavia. J Zool 286(2):120–130

    Article  Google Scholar 

  49. Schmidt K (1998) Maternal behaviour and juvenile dispersal in the Eurasian lynx. Acta Theriol 43:391–408

    Article  Google Scholar 

  50. Schmidt K, Kowalczyk R, Ozolins J, Männil P, Fickel J (2009) Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv Genet 10(2):497–501

    Article  Google Scholar 

  51. Schmidt K, Ratkiewicz M, Konopiński MK (2011) The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change. Mammal Rev 41:112–124. doi:10.1111/j.1365-2907.2010.00180.x

    Article  Google Scholar 

  52. Sindičić M, Polanc P, Gomerčić T, Jelenčič M, Huber D, Trontelj P, Skrbinšek T (2013a) Genetic data confirm critical status of the reintroduced Dinaric population of Eurasian lynx. Conserv Genet 14:1009–1018

  53. Sindičić M, Gomerčić T, Polanc P, Krofel M, Slijepčević V, Gembarovski N, Durčević M, Huber D (2013b) Kinship analysis of Dinaric lynx (Lynx lynx) population. Sumarski list 1–2:43–49

  54. Skalski JR, Ryding KE, Millspaugh JJ (2005) Wildlife demography: analysis of sex, age, and count data. Elsevier, Amsterdam

    Google Scholar 

  55. Sunde P, Kvam T, Moa P, Negard A, Overskaug K (2000) Space use by Eurasian lynxes Lynx lynx in central Norway. Acta Theriol 45(4):507–524

    Article  Google Scholar 

  56. Sutherland WJ (2000) The conservation handbook: research, management and policy. Blackwell Science, Oxford

    Book  Google Scholar 

  57. Valdmann H, Andersone-Lilley Z, Koppa O, Ozolins J, Bagrade G (2005) Winter diets of wolf Canis lupus and lynx Lynx lynx in Estonia and Latvia. Acta Theriol 50(4):521–527

    Article  Google Scholar 

  58. von Arx M, Breitenmoser-Würsten C, Zimmermann F, Breitenmoser U (eds) (2004) Status and conservation of the Eurasian lynx (Lynx lynx) in Europe in 2001. KORA Bericht No 19

  59. Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U (2005) Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. J Zool 267(04):381–395

    Article  Google Scholar 

  60. Žunna A, Ozoliņš J, Stepanova A, Ornicāns A, Bagrade G (2011) Food habits of the lynx (Lynx lynx) in Latvia based on hunting data. In: Stubbe M (ed) Beiträge zur Jagd und Wildforschung, Band 36. Gesellschaft für Wildtierb und Jagdforschung e.V, Halle/Saale, pp 309–317

    Google Scholar 

Download references

Acknowledgments

We are grateful to all who provided us with the materials used in this study. We are grateful to Urmas Saarma for advice and guidance on the genetic aspects covered in this article. The study was supported and funded by the European Social Fund (project no. 2014/0002/1DP/1.1.1.2.0/13/APIA/VIAA/053) “Developing of genetic monitoring for wildlife in Latvia”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guna Bagrade.

Additional information

Communicated by: Krzysztof Schmidt

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

(DOCX 14 kb)

Appendix 2

(DOCX 19 kb)

Appendix 3

(DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagrade, G., Ruņģis, D.E., Ornicāns, A. et al. Status assessment of Eurasian lynx in Latvia linking genetics and demography—a growing population or a source–sink process?. Mamm Res 61, 337–352 (2016). https://doi.org/10.1007/s13364-016-0279-8

Download citation

Keywords

  • Lynx
  • Demography
  • Genetic variation
  • Population structure